INTERMEDIATE PART-I (11th CLASS)

MATHEMATICS PAPER-I GROUP-I

TIME ALLOWED: 2.30 Hours

SUBJECTIVE

MAXIMUM MARKS: 80

NOTE: - Write same question number and its part number on answer book, as given in the question paper.

SECTION-I

2. Attempt any eight parts.

 $8 \times 2 = 16$

- (i) Write Closure Law and Commutative Law of Multiplication of Real Numbers.
- (ii) Show that $z^2 + (\overline{z})^2$ is a real number, $\forall z \in c$.
- (iii) Show that $z.\overline{z} = |z|^2$, $z \in c$.
- (iv) Define a semi group.
- (v) Write number of elements of sets $\{a, b\}$ and $\{\{a, b\}\}$.
- (vi) If $A = \{1, 2, 3, 4\}$, then write a relation in A for $\{(x, y) / x + y = 5\}$
- (vii) Define Symmetric and Skew Symmetric Matrix.
- (viii) If the matrix $\begin{bmatrix} 4 & \lambda & 3 \\ 7 & 3 & 6 \\ 2 & 3 & 1 \end{bmatrix}$ is symmetric, then find value of λ .
- (ix) Without expansion, show that $\begin{vmatrix} \alpha & \beta + \gamma & 1 \\ \beta & \alpha + \gamma & 1 \\ \gamma & \alpha + \beta & 1 \end{vmatrix} = 0$
- (x) Solve $x^{\frac{1}{2}} x^{\frac{1}{4}} 6 = 0$
- (xi) Show that the polynomial (x-1) is a factor of polynomial $x^2 + 4x 5$ by using factor theorem.
- (xii) Discuss nature of roots of equation $x^2 + 2x + 3 = 0$.

3. Attempt any eight parts.

 $8 \times 2 = 16$

- (i) Resolve $\frac{1}{r^2-1}$ into partial fractions.
- (ii) Write the first four terms of the sequence, if $a_n = (-1)^n n^2$.
- (iii) How many terms of the series -7 + (-5) + (-3) + ---- amount to 65?
- (iv) Find the geometric mean between -2i and 8i.
- (v) Find the sum of the infinite geometric series $4 + 2\sqrt{2} + 2 + \sqrt{2} + 1 + ----$
- (vi) Write two important relations between arithmetic, geometric and harmonic means.
- (vii) Write the following in factorial form (n+2)(n+1)(n)
- (viii) Find the value of n, when ${}^{n}C_{12} = {}^{n}C_{6}$.
- (ix) A die is rolled. Find the probability that top shows 3 or 4 dots.
- (x) Use mathematical induction to verify for n = 1, 2 $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{2^{n-1}} = 2 \left[1 \frac{1}{2^n} \right].$
- (xi) Calculate (9.98)⁴ by means of binomial theorem.
- (xii) Expand $\frac{\sqrt{1+2x}}{1-x}$ up to 4 terms, taking the values of x such that the expansion in each case is valid.

Attempt any nine parts.

4.

- (i) Convert the angle 54° 45' into radians.
- (ii) Find r, when $\ell = 56 \, cm$ $\theta = 45^{\circ}$ in a circle.
- (iii) Prove that $\frac{1}{1 + Sin\theta} + \frac{1}{1 Sin\theta} = 2Sec^2\theta$
- (iv) If $Cos\alpha = \frac{3}{5}$, find the value of $Cot\alpha$, where $0 < \alpha < \frac{\pi}{2}$
- (v) If α , β , γ are angles of a triangle $\triangle ABC$, then prove that $Sin(\alpha + \beta) = Sin\gamma$
- (vi) Prove that $Sin3\alpha = 3Sin\alpha 4Sin^3\alpha$
- (vii) Find the period of $\tan \frac{x}{3}$
- (viii) State the Law of Cosines.
- (ix) Find the area of $\triangle ABC$ with a = 200, b = 120 included angle $\gamma = 150^{\circ}$
- (x) Find R if a = 13, b = 14, c = 15 are the sides of triangle $\triangle ABC$.
- (xi) Find the value of $Sin\left(Cos^{-1}\frac{\sqrt{3}}{2}\right)$
- (xii) Solve the equation $Sin x = \frac{1}{2}$
- (xiii) Solve Sin x + Cos x = 0

SECTION-II

NOTE: - Attempt any three questions.

 $3\times10=30$

5

- 5.(a) Prove that all non-singular matrices of order 2 × 2 over real field form a non-abelian group under multiplication.
 - (b) Find the value of λ for which the following system does not possess a unique solution. Also solve the system for the value of λ .

$$x_1 + 4x_2 + \lambda x_3 = 2$$
$$2x_1 + x_2 - 2x_3 = 11$$

$$3x_1 + 2x_2 - 2x_3 = 16$$

- 6.(a) Show that the roots of the equation $x^2 2\left(m + \frac{1}{m}\right)x + 3 = 0$, $m \ne 0$, are real.
 - (b) Resolve $\frac{x^4}{1-x^4}$ into partial fraction.
- 7.(a) Sum the series: $\frac{1}{1+\sqrt{x}} + \frac{1}{1-x} + \frac{1}{1-\sqrt{x}} + ---- \text{ to } n \text{ terms.}$ 5
 - (b) Determine the middle terms in the expansion of $\left(\frac{3}{2}x \frac{1}{3x}\right)^{11}$
- 8.(a) Prove the following identity: $\sin^6 \theta \cos^6 \theta = (\sin^2 \theta \cos^2 \theta)(1 \sin^2 \theta \cos^2 \theta)$ 5
 - (b) Prove that: $\frac{\sin \theta + \sin 3\theta + \sin 5\theta + \sin 7\theta}{\cos \theta + \cos 3\theta + \cos 5\theta + \cos 7\theta} = \tan 4\theta$
- 9.(a) Prove that $(r_1 + r_2) Tan \frac{\gamma}{2} = c$ (with usual notations)
 - (b) Prove that $Cos^{-1}\frac{63}{65} + 2Tan^{-1}\frac{1}{5} = Sin^{-1}\frac{3}{5}$

Paper	0101	INTERMEDIA	2018 (A)	Roll No:
Numbe				
Note: think i	You have four choic is correct, fill that bul	es for each objective oble in front of that q	ECTIVE type question as A uestion number. in zero mark in t	TIME ALLOWED: 30 Minutes MAXIMUM MARKS: 20 A, B, C and D. The choice which you Use marker or pen to fill the bubbles. that question. Attempt as many questions a credit will be awarded in case BUBBLES
are no Q.No.1	t filled. Do not solve l	questions on this she	et of OBJECTIV	E PAPER.
(1)	If n is prime then \sim	\sqrt{n} is:-	20.00	
(2)	TC 1 - C 1	Cian amounthan (ab)	-1 _	er (D) Irrational number
	(A) $a^{-1}b^{-1}$	(B) $b^{-1}a^{-1}$	(C) $\frac{1}{ab}$	(D) $\frac{-1}{ab}$
(3)	If $A = \begin{bmatrix} 3 & 1 \\ 4 & 2 \end{bmatrix}$ then	co-factor of "4" is:	(A) + 1	(D) $\frac{-1}{ab}$ (B) -1 (C) -4 (D) 3
(4)	If $A = \left[a_{ij}\right]_{3\times3}$, t	hen <i>KA</i> =		
	(A) A	(B) K A	(C) $K^2 A $	(D) $K^3 A $
(5)	If $x^3 + 4x^2 - 2x + 5$	is divided by $x-1$	then the remainde	er is:- (A) 10 (B) - 10 (C) 8 (D) - 8
(6)		the equation $2x^2 + 5x$		
(0)	(A) Irrational and une	equal (B) Rational ar	d equal (C) Imag	ginary (D) Rational and unequal
(7)	The type of rational f	Fraction $\frac{3x^2 - 1}{x - 2}$ is:-	(A) Proper (B) Improper (C) Polynomial (D) Identity
(8)	In geometric sequence	e nth term is:-		
	(A) $a_1 + (n-1)d$	(B) $\frac{n}{2}[2a_1 + (n -$	$-1) d] (C) \frac{a}{1-a}$	$\frac{a_1}{r}$ (D) $a_1 r^{n-1}$
(9)	For any series $\sum_{k=1}^{n} K$		n(n+1)	$n^2 (n+1)^2$
	0	2		(D) $\frac{n^2 (n+1)^2}{4}$
(10)	For two events A an	d B if P(A) = P(B)	$=\frac{1}{3}$ then probab	ility $P(A \cap B) = $
	(A) $\frac{1}{9}$	(B) $\frac{1}{3}$	(C) $\frac{1}{6}$	(D) 1
(11)	If ${}^nC_n = {}^nC_{12}$, whe	ere C stands for combi	nation then value	of n is equals to:-
	(A) 4		(C) 8	
(12)	The inequality $n^2 >$	n+3 is true for:-	(A) $n \ge 2$ (B)	$n \ge 3$ (C) $n \ge 0$ (D) $n \ge 1$
(13)	The coefficient of th	e last term in the expan	nsion of $(x-y)^5$	is:- $(A)-1$ (B) 1 (C) 5 $(D)-5$
(14)	$Sin^2(5\theta) + Cos^2$	5θ)=	(A) 5	B) 2 (C) 1 (D) 10
(15)		entities $Sin 2\alpha = $		
	(A) $1-2 Sin^2 \alpha$	(B) $2\sin\alpha \cos\alpha$	(C) $2Cos^2\alpha - 1$	(D) $Cos^2\alpha - Sin^2\alpha$
(16)	The smallest positiv	ve number p for which	$\operatorname{ch} f(x+p) = f$	(x) is called:-
(17)	(A) Index	(B) Domain (BC, with usual notation	(C) Coefficients	(D) Period
		(B) $\frac{\Delta}{s-a}$		
(18)	If $\triangle ABC$ is right a	ngle triangle such that	$m\angle\alpha=90^{\circ}$ then	n with usual notations, the true statement is:-
	$(A) a^2 = b^2 + c^2$	(B) $b^2 = a^2 + c^2$	(C) $c^2 = a^2 + b$	$b^2 (D) a^2 = b^2 = c^2$
(19)			$(C) - \pi/2 \le x \le$	$\pi/2$ (D) $-\pi/2 < x < \pi/2$
(20)	If $Sin x = \frac{1}{2}$ then			
	24		(C) $\frac{\pi}{3}$, $\frac{2\pi}{3}$	(D) $\frac{\pi}{6}$, $\frac{5\pi}{6}$
				(A)-2018(A)-21000 (MULTAN)

Paper Code Number: 2193		INTERMEDI	2018 (A) ATE PART-I (11	Roll No:			
-	HEMATICS	PAPER-I GROU		TIME ALLOWED: 30 Minutes MAXIMUM MARKS: 20			
think i Cuttin given i	is correct, fill that ag or filling two or in objective type q at filled. Do not so	noices for each objective bubble in front of that more bubbles will rest	re type question as a question number. ult in zero mark in the others blank. No	A, B, C and D. The choice which you Use marker or pen to fill the bubbles. that question. Attempt as many questions credit will be awarded in case BUBBLES E PAPER.			
(1)	The smallest position (A) Index	tive number p for whi (B) Domain	(C) Coefficients	(D) Period			
(2)		$\triangle ABC$, with usual notation (B) $\frac{\Delta}{s-a}$	and the same of th				
(3)	If $\triangle ABC$ is right	5 4	t $m \angle \alpha = 90^{\circ}$, then	with usual notations, the true statement is:-			
(4)	The domain of $y = (A) -1 < x < 1$		$(C) - \pi/2 \le x \le 7$	$\frac{\pi}{2}$ (D) $-\frac{\pi}{2} < x < \frac{\pi}{2}$			
(5)	If $Sin x = \frac{1}{2}$ then						
(6)	(A) $-\pi/6$, $5\pi/6$ If <i>n</i> is prime the	(B) $-\pi/6$, $-5\pi/6$ n \sqrt{n} is:-	(C) $\frac{\pi}{3}$, $\frac{2\pi}{3}$	(D) $\frac{\pi}{6}$, $\frac{5\pi}{6}$			
(7)	(A) Rational number $a, b \in G$, when	oer (B) Whole number are G is a group then (G)	$(ab)^{-1} = \underline{\hspace{1cm}}$	per (D) Irrational number			
		(B) $b^{-1}a^{-1}$					
(8)	If $A = \begin{bmatrix} 3 & 1 \\ 4 & 2 \end{bmatrix}$ the second second in the second secon	nen co-factor of "4"	is:- $(A) + 1$	(B)-1 $(C)-4$ $(D) 3$			
(9)		, then $ KA = $ (B) $K A $		$(D) \mathcal{V}^3[A]$			
(10)				er is:- (A) 10 (B) – 10 (C) 8 (D) – 8			
(11)	Nature of the root (A) Irrational and	s of the equation $2x^2$ + unequal (B) Rational	5x - 1 = 0:- and equal (C) Imag	ginary (D) Rational and unequal			
(12)	The type of ration	nal fraction $\frac{3x^2-1}{x-2}$ is	:- (A) Proper ((B) Improper (C) Polynomial (D) Identity			
(13)	The second secon	dence <i>nth</i> term is:- $\frac{n}{2} \left[2a_1 + (n + 1)^n \right]$	$(a-1) d$ (C) $\frac{a}{1-a}$	$\frac{a_1}{r}$ (D) $a_1 r^{n-1}$			
(14)	For any series						
	(A) $\frac{n(n+1)(2n+1)}{6}$	(B) $\frac{n(n-1)}{2}$	(C) $\frac{n(n+1)}{2}$	(D) $\frac{n^2 (n+1)^2}{4}$			
(15)			3	ility $P(A \cap B) = $			
	(A) $\frac{1}{9}$	(B) $\frac{1}{3}$	(C) $\frac{1}{6}$	(D) 1			
(16)	If ${}^{n}C_{8} = {}^{n}C_{12}$, v (A) 4	where C stands for com (B) 20	bination then value of (C) 8				
(17)	*			$n \ge 3$ (C) $n \ge 0$ (D) $n \ge 1$			
(18)				is:- $(A)-1$ (B) 1 (C) 5 $(D)-5$			
(19) (20)	$Sin^2(5\theta) + Cos$			3) 2 (C) 1 (D) 10			
	(A) $1-2Sin^2\alpha$	(B) $2\sin\alpha \cos\alpha$	(C) $2Cos^2\alpha - 1$	(D) $Cos^2 \alpha - Sin^2 \alpha$ (Caracteristic) (2018(A)-21000 (MULTAN)			

	r Code	2105	ANTARAS A SALA		Roll No:
Numl		2195		IATE PART-I (11	
				BJECTIVE	TIME ALLOWED: 30 Minutes MAXIMUM MARKS: 20
hink Cutti given	is correcting or fill in object of filled.	ct, fill that ing two or tive type o	bubble in front of the more bubbles will re	at question number. sult in zero mark in t ave others blank. No	A, B, C and D. The choice which you Use marker or pen to fill the bubbles. that question. Attempt as many questions credit will be awarded in case BUBBLE. E PAPER.
1)		$= {}^{n}C_{12}, v$	where C stands for con (B) 20	nbination then value of (C) 8	
2)		quality n^2	> n + 3 is true for:-	(A) $n \ge 2$ (B)	$n \ge 3$ (C) $n \ge 0$ (D) $n \ge 1$
3)					s:- (A)-1 (B) 1 (C) 5 (D)-5
4)) 2 (C) 1 (D) 10
5)			identities $Sin2\alpha =$, = (0) 1 (2) 13
	(A) 1-	$2Sin^2\alpha$	(B) 2 sin α Cos α	(C) $2Cos^2\alpha - 1$	(D) $\cos^2 \alpha - \sin^2 \alpha$
6)			tive number p for wh		
7)	(A) Ind	lex		(C) Coefficients	(D) Period
	$(A) \stackrel{\Delta}{=}$		(B) $\frac{\Delta}{s-a}$	(C) $\frac{\Delta}{}$	$(D) \stackrel{\Delta}{\longrightarrow}$
			3 - 4	3 - 0	3 – 6
8)					with usual notations, the true statement is: (D) $a^2 = b^2 = c^2$
9)			$= Sin^{-1}x$ is:-		
	(A) -	1 < x < 1	(B) $-1 \le x \le 1$	(C) $-\pi/2 \le x \le 7$	$\frac{\pi}{2}$ (D) $-\frac{\pi}{2} < x < \frac{\pi}{2}$
10)			1 x =	, 2	
	$(A)^{-2}$	$\frac{\pi}{6}$, $\frac{5\pi}{6}$	(B) $-\pi/6$, $-5\pi/6$	$_{6}^{\prime}$ (C) π_{3}^{\prime} , $2\pi_{3}^{\prime}$	(D) $\frac{\pi}{6}$, $\frac{5\pi}{6}$
11)	(A) Ra	tional num			per (D) Irrational number
12)			ere G is a group then		
		2 - 2	(B) $b^{-1}a^{-1}$	uo	av
					(B) -1 (C) -4 (D) 3
14)			$_3$, then $ KA = $		
	(A) A		(B) K A	(C) $K^2 A $	(D) $K^3 A $
15)	If x^3	$+4x^2-2x$	x + 5 is divided by x	-1 then the remaind	er is:- (A) 10 (B) -10 (C) 8 (D) -8
16)	Nature (A) Irra	of the roo	ts of the equation $2x^2$ unequal (B) Rationa	+5x-1=0:- al and equal (C) Imag	ginary (D) Rational and unequal
17)	The ty	pe of ration	nal fraction $\frac{3x^2-1}{x-2}$ i	s:- (A) Proper (I	B) Improper (C) Polynomial (D) Identity
18)	In geor	metric sequ	ence nth term is:-		
	(A) a ₁	+(n-1)	d (B) $\frac{n}{2} [2a_1 + ($	$(n-1) d$ (C) $\frac{a}{1-a}$	$\frac{d_1}{r} (D) \ a_1 r^{n-1}$
(19)	For any	y series $\sum_{k=1}^{k}$	K =		
		0	$\frac{n+1)}{2} \text{(B) } \frac{n(n-1)}{2}$	2	4
(20)	For tw	o events A	and B if $P(A) = P$	$(B) = \frac{1}{3}$ then probabilities	ility $P(A \cap B) = \underline{\hspace{1cm}}$
	(A) $\frac{1}{9}$		(B) $\frac{1}{3}$	(C) $\frac{1}{6}$	(D) 1
				12/01:1/5)-2018(A)-21000 (MULTAN)

	r Code	2105	1	2018 (A)	Roll No:
Num	ber:	2197	INTERMEDIA	TE PART-I (11th	CLASS)
Note	: You ha		OBJ ces for each objective	ECTIVE type question as A,	TIME ALLOWED: 30 Minutes MAXIMUM MARKS: 20 B, C and D. The choice which you
Cutti	ng or filli in object ot filled.	ng two or mo ive type que	ore bubbles will resul	t in zero mark in the others blank. No co	se marker or pen to fill the bubbles. at question. Attempt as many questions a redit will be awarded in case BUBBLES PAPER.
(1)			the equation $2x^2 + 5$		ary (D) Rational and unequal
(2)					Improper (C) Polynomial (D) Identity
(3)			x-2 se <i>nth</i> term is:-		
	(A) a ₁ +	+(n-1)d	(B) $\frac{n}{2}[2a_1 + (n -$	$-1) d] (C) \frac{a_1}{1-r}$	(D) $a_1 r^{n-1}$
(4)	For any	series $\sum_{i=1}^{n} K_i$	=		
	(A) $\frac{n}{}$	$\frac{n+1)(2n+1)}{6}$	(B) $\frac{n(n-1)}{2}$	(C) $\frac{n(n+1)}{2}$	(D) $\frac{n^2 (n+1)^2}{4}$
(5)	For two	events A and	1 B if P(A) = P(B)	$=\frac{1}{3}$ then probability	$P(A \cap B) = \underline{\hspace{1cm}}$
	(A) $\frac{1}{9}$		(B) $\frac{1}{3}$	(C) $\frac{1}{6}$	(D) 1
(6)		= ${}^{n}C_{12}$, wher	e C stands for combin		
(7)	(A) 4	1:4 2	(B) 20	(C) 8	(D) 12 ≥ 3 (C) $n \geq 0$ (D) $n \geq 1$
(7)					
(8)					(A)-1 (B) 1 (C) 5 $(D)-5$
(9) (10)	For dou	ble angle ide	ntities $Sin 2\alpha =$		2 (C) 1 (D) 10
	(A) 1 - 2	$2Sin^2\alpha$	(B) $2\sin\alpha \cos\alpha$	(C) $2Cos^2\alpha - 1$	(D) $Cos^2\alpha - Sin^2\alpha$
(11)			e number p for which		
				(C) Coefficients	(D) Period
(12)	2		BC, with usual notation		
	$(A) \frac{\Delta}{s}$		(B) $\frac{\Delta}{s - a}$	(C) $\frac{\Delta}{a}$	(D) $\frac{\Delta}{\Delta}$
(13)			5 u	3 - 0	th usual notations, the true statement is:-
(10)			(B) $b^2 = a^2 + c^2$		
(14)		nain of $y =$		(0)	(0)
. ,				$(C) -\pi/2 \le x \le \pi/2$	(D) $-\pi/2 < x < \pi/2$
(15)			=	(6) /2 - 11 / 2	2 (2) /2 - 1/2
	$(A)^{-\pi}$	$\frac{1}{6}$, $\frac{5\pi}{6}$	(B) $-\pi/6$, $-5\pi/6$	(C) $\frac{\pi}{3}$, $\frac{2\pi}{3}$	(D) $\frac{\pi}{6}$, $\frac{5\pi}{6}$
(16)		prime then		(C) Natural number	(D) Irrational number
(17)	If a, b	$\in G$, where	G is a group then (all	b) ⁻¹ =	
			(B) $b^{-1}a^{-1}$	uv	ao
(18)	If $A =$	$\begin{bmatrix} 3 & 1 \\ 4 & 2 \end{bmatrix}$ the	n co-factor of "4" i	s:- (A) + 1	(B)-1 $(C)-4$ $(D)3$
(19)	If $A =$	$=\left[a_{ij}\right]_{3\times3}$,	then <i>KA</i> =		
	(A) A		(B) K A	(C) $K^2 A $	(D) $K^3 A $
(20)				1 then the remainder	is:- (A) 10 (B) -10 (C) 8 (D) -8 (-2018 (A)-21000 (MULTAN)

INTERMEDIATE PART-I (11th CLASS)

MATHEMATICS PAPER-I GROUP-II

TIME ALLOWED: 2.30 Hours

SUBJECTIVE

MAXIMUM MARKS: 80

NOTE: - Write same question number and its part number on answer book, as given in the question paper.

SECTION-I

2. Attempt any eight parts.

 $8 \times 2 = 16$

- (i) Prove that $\frac{7}{12} \frac{5}{18} = \frac{-21 10}{36}$ by justifying each step. (writing each property)
- (ii) Simplify the following $(5, -4) \div (-3, -8)$
- (iii) Prove that $\overline{z} = z$ if and only if z is real.
- (iv) Write two proper subsets of the set of real numbers R.
- (v) Construct truth table for the following $(p \land \sim p) \rightarrow q$.
- (vi) For a set $A = \{1, 2, 3, 4\}$, find the relation $R = \{(x, y) \mid x + y < 5\}$ in A. Also state the domain of R.
- (vii) Find 'x' and 'y' if the matrices are as $\begin{bmatrix} x+3 & 1 \\ -3 & 3y-4 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix}$
- (viii) If $A = [a_{ij}]_{3 \times 4}$, then show that $I_3 A = A$
- (ix) Without expansion show that $\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = 0$
- (x) Solve the following equation by factorization x(x+7) = (2x-1)(x+4)
- (xi) Show that $x^3 y^3 = (x y)(x \omega y)(x \omega^2 y)$, where ω is a cube root of unity.
- (xii) Use remainder theorem to find the remainder, when $x^2 + 3x + 7$ is divided by x + 1.

Attempt any eight parts.

 $8 \times 2 = 16$

- (i) Define a Partial Fraction.
- (ii) If $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are in arithmetic progression, show that $b = \frac{2ac}{a+c}$
- (iii) Find the arithmetic mean between $3\sqrt{5}$ and $5\sqrt{5}$.
- (iv) If the series $y = \frac{x}{2} + \frac{x^2}{4} + \frac{x^3}{8} + ---- \infty$ and 0 < x < 2. Then prove that $x = \frac{2y}{1+y}$
- (v) If 5 is Harmonic mean between "2" and "b". Find "b".
- (vi) Prove that $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$
- (vii) How many 5 digits multiples of "5" can be formed from the digits 2, 3, 5, 7, 9 when no digit is to be repeated?
- (viii) Find n if ${}^{n}C_{5} = {}^{n}C_{4}$ (C is used for combination)
- (ix) What is the probability that a slip of numbers divisible by 4 is picked from slips bearing numbers 1, 2, 3, ____, 10?
- (x) Use Binomial Theorem, find (21)⁵.
- (xi) Expand up to four terms $(8-2x)^{-1}$
- (xii) If x be so small that its square and higher powers can be neglected. Then prove $\frac{\sqrt{1+2x}}{\sqrt{1-x}} \approx 1 + \frac{3x}{2}$

Attempt any nine parts.

- Find " ℓ " (arc length) when r = 18mm and $\theta = 65^{\circ} 20'$. (i)
- If $\sec \theta < 0$ and $\sin \theta < 0$, in which quadrant terminal arm of '\theta' lies. (ii)
- Show that $Sin^2 \frac{\pi}{6} + Sin^2 \frac{\pi}{3} + tan^2 \frac{\pi}{4} = 2$ (iii)
- Prove that $Sin(180^{\circ} + \theta)$ $Sin(90^{\circ} \theta) = -Sin\theta Cos\theta$ (iv)
- (v) Find the value of Sin15°
- Prove that $\tan 2\theta = \frac{2 \tan \theta}{1 \tan^2 \theta}$ (vi)
- (vii) Find the period of $\cos x/6$
- In a right $\triangle ABC$, if b=30.8, c=37.2 and $\gamma=90^{\circ}$. Find α and β (viii)
- Find the area of $\triangle ABC$ in which b = 21.6, c = 30.2 and $\alpha = 52^{\circ} 40'$. (ix)
- (x) Define "Inscribed Circle".
- Show that $Cos(Sin^{-1}x) = \sqrt{1-x^2}$ (xi)
- Solve the equation $Sin x = \frac{1}{2}$ where $x \in [0, 2\pi]$ (xii)
- Solve the equation $4\cos^2 x 3 = 0$, where $x \in [0, 2\pi]$

NOTE: - Attempt any three questions.

 $3 \times 10 = 30$

- Show that the set $\{1, \omega, \omega^2\}$, (where $\omega^3 = 1$), is an abelian group w.r.t. ordinary multiplication. 5.(a)
- Without expansion verify that $\begin{vmatrix} -a & 0 & c \\ 0 & a & -b \\ b & -c & 0 \end{vmatrix} = 0$ (b) 5
- Resolve $\frac{x^2+1}{x^3+1}$ into Partial Fraction. 6.(a) 5
 - Solve the equation $\sqrt{3x^2 7x 30} \sqrt{2x^2 7x 5} = x 5$ (b) 5
- Find the value of n so that $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ may be the Arithmetic Mean between a and b. 7.(a)
 - Use mathematical induction to prove that the following formula holds for every positive (b) integer "n"

$$\frac{1}{2 \times 5} + \frac{1}{5 \times 8} + \frac{1}{8 \times 11} + ---- + \frac{1}{(3n-1)(3n+2)} = \frac{n}{2(3n+2)}$$

- Prove that $\sin^6 \theta + \cos^6 \theta = 1 3\sin^2 \theta \cos^2 \theta$ 8.(a) 5
- Prove that $\sin \frac{\pi}{9} \sin \frac{2\pi}{9} \sin \frac{\pi}{3} \sin \frac{4\pi}{9} = \frac{3}{16}$ (b) 5
- The sides of a triangle are $x^2 + x + 1$, 2x + 1 and $x^2 1$. 9.(a) Prove that the greatest angle of the triangle is 120° 5
- Prove that $Cos^{-1}\frac{63}{65} + 2 tan^{-1}\frac{1}{5} = Sin^{-1}\frac{3}{5}$ 5

Paper Code		2018 (A)	Roll No:
Number: 2192	INTERMEDIA	ATE PART-I (11th	CLASS)
MATHEMATICS PA	PER-I GROU		TIME ALLOWED: 30 Minutes
W		ECTIVE	MAXIMUM MARKS: 20
			B, C and D. The choice which you se marker or pen to fill the bubbles.
Cutting or filling two or mo	re bubbles will resu	lt in zero mark in th	at question. Attempt as many
			blank. No credit will be awarded in
case BUBBLES are not fille Q.No.1	a. Do not solve que	stions on this sheet (of Objective Paper.
(1) Multiplicative inverse	of complex number	$(\sqrt{2}, -\sqrt{5})$ is:-	
$(A)\left(\frac{\sqrt{2}}{\sqrt{7}},\frac{\sqrt{5}}{\sqrt{7}}\right)$	(B) $\left(\frac{-\sqrt{2}}{\sqrt{7}}, \frac{-\sqrt{5}}{\sqrt{7}}\right)$	(C) $\left(\frac{\sqrt{2}}{7}, \frac{\sqrt{5}}{\sqrt{7}}\right)$	(D) $\left(\frac{\sqrt{2}}{7}, \frac{\sqrt{5}}{7}\right)$
(2) If A , B are two sets	then $A \cap (A \cup B)$ ea	quals:- (A)	4 (B) $A \cup B$ (C) B (D) ϕ
(3) A square matrix A is	called skew symmetr	ric if $A' = $	
(4) If $\begin{vmatrix} 2 & \lambda \\ 3 & 7 \end{vmatrix} = 2$, then	(B) \overline{A}	$(C) - A^t$	(D) - A
(4) If $\begin{vmatrix} 2 & \lambda \\ 2 & 7 \end{vmatrix} = 2$, then	<i>λ</i> =	(A) 1 (B	3) 2 (C) 3 (D) 4
(5) A reciprocal equation,	the second secon		
(A) $\frac{-1}{r}$	(B) $\frac{1}{r^2}$	(C) - x	(D) $\frac{1}{r}$
(6) $f(x) = 3x^4 + 4x^3 +$	x - 5 is divided by		is:- $(A) - 6$ $(B) 7$ $(C) 6$ $(D) - 7$
(7) Types of rational fract	ions are:-	(A) Two	(B) Three (C) Four (D) Infinite
(8) Harmonic Mean betw	een a and b is:-	$(A) \frac{ab}{ab}$	(B) $\frac{a+b}{ab}$ (C) $\frac{2ab}{a+b}$ (D) $\frac{a-b}{ab}$
			A = A.M and $H = H.M$)
(A) – 5			
(10) ${}^{n}C_{r-1} + {}^{n}C_{r-2}$ is eq	4		3
(A) ${}^{n}C_{r-1}$	$(\mathbf{D})^{n+1}C$	(Where C is conn	(D) "C
	(B) 1	(C) 2	(D) 3
(12) In the expansion of ($(3+x)^4$ middle term	will be:- (A) 81	(D) 3 (B) $54x^2$ (C) $26x^2$ (D) x^4
(13) The inequality $4^n >$			
(A) $n = 2$		(C) $n = -1$	(D) $n = -2$
(14) The angle $\frac{\pi}{12}$ in degree			
(15) $\tan(\pi - \alpha)$ equals:			
(A) $\tan(n-\alpha)$ equals.		(C) $\cot \alpha$	(D) $-\cot \alpha$
(16) Period of $\cot 8x$ is:-	(-)	(0) 00.0	(2)
(A) $\frac{\pi}{8}$	(B) $\frac{\pi}{}$	(C) $\frac{\pi}{}$	(D) π
0	4		
(17) In any triangle $\triangle ABC$	C, with usual notation	n, $\sqrt{\frac{s(s-c)}{ab}}$ is equ	nal to:-
(A) $\sin \frac{\gamma}{2}$	(B) $\cos \frac{\gamma}{2}$	$(C) \sin \frac{\alpha}{2}$	(D) $\cos \frac{\alpha}{2}$
2	2	2	(2) 2
(18) In a right angle triang (A) 90°	(B) 30°	(C) 45°	(D) 60°
		(0) 43	(2) 00
(19) The value of $\sin^{-1} \left(c \right)$	$\frac{6}{6}$ is equal to:-		
(A) $\frac{\pi}{2}$	(B) $\frac{3\pi}{}$	(C) $\frac{\pi}{}$	(D) $\frac{\pi}{3}$
2	2	6	3
(20) If $\sin x = \frac{1}{2}$ then x	is equal to:-		
(A) $\frac{\pi}{6}$, $\frac{5\pi}{6}$	(B) $\frac{-\pi}{6}$, $\frac{-5\pi}{6}$	(C) $\frac{-\pi}{6}$	(D) $\frac{-5\pi}{6}$
6' 6	6, 6		0
		15(Obj)(🛣)	-2018(A)-13000 (MULTAN)

Paper	21	0.4	TATION TO BE STORY	2018 (A) DIATE PART-I (Roll No:
Numbe	-	94			
7	HEMATIC		<u>o</u>	UP-II BJECTIVE	TIME ALLOWED: 30 Minutes MAXIMUM MARKS: 20
think i Cuttin questic	is correct, fill g or filling twons as given i UBBLES are	that bub yo or mor n objecti not filled	ble in front of the bubbles will reversely to the bubbles will reversely to the bubbles will be bubbles and the bubbles will be bubbles.	at question number esult in zero mark in paper and leave oth questions on this sh	s A, B, C and D. The choice which you r. Use marker or pen to fill the bubbles. n that question. Attempt as many hers blank. No credit will be awarded in eet of OBJECTIVE PAPER.
(1)				ion, $\sqrt{\frac{s(s-c)}{ab}}$ is	
	(A) $\sin \frac{\gamma}{2}$		(B) $\cos \frac{\gamma}{2}$	(C) $\sin \frac{\alpha}{2}$	(D) $\cos \frac{\alpha}{2}$
(2)	(A) 90°		e no angle is grea (B) 30"	(C) 45"	(D) 60°
(3)	The value of	sin ⁻¹ co	$s\frac{\pi}{6}$ is equal to:-		
	(A) $\frac{\pi}{2}$		(B) $\frac{3\pi}{2}$	(C) $\frac{\pi}{6}$	(D) $\frac{\pi}{3}$
(4)	If $\sin x = \frac{1}{2}$				
			(B) $\frac{-\pi}{6}$, $\frac{-5\pi}{6}$		$(D) \frac{-5\pi}{6}$
(5)	Multiplicativ	ve inverse	of complex num	ber $(\sqrt{2}, -\sqrt{5})$ is:	$(\sqrt{2} \sqrt{5})$
	$(A) \left(\frac{\sqrt{2}}{\sqrt{7}}, \frac{1}{\sqrt{7}} \right)$	$\frac{\sqrt{3}}{\sqrt{7}}$	(B) $\left(\frac{-\sqrt{2}}{\sqrt{7}}, \frac{-\sqrt{2}}{\sqrt{7}}\right)$	$\frac{\sqrt{3}}{7}$ (C) $\left(\frac{\sqrt{2}}{7}, \frac{\sqrt{3}}{3}\right)$	$\left(\frac{\sqrt{5}}{\sqrt{7}}\right) (D)\left(\frac{\sqrt{2}}{7}, \frac{\sqrt{5}}{7}\right)$
(6)					(A) A (B) $A \cup B$ (C) B (D) ϕ
(7)	A square ma	trix A is	called skew sym	metric if $A' = $	
	(A) A		(B) A	(C) - A'	(D) - A
					(D) - A (B) 2 (C) 3 (D) 4
(9)				ged when variable x	
	(A) $\frac{-1}{x}$		(B) $\frac{1}{x^2}$	(C) - x	(D) $\frac{\cdot}{x}$
(10) (11)	Types of rat	ional frac	ctions are:-	(A) Tv	vo (B) Three (C) Four (D) Infir
(12)	Harmonic N	Aean betv	ween a and b i	s:- (A) $\frac{a}{a}$	$\frac{ab}{+b}$ (B) $\frac{a+b}{ab}$ (C) $\frac{2ab}{a+b}$ (D) $\frac{a-b}{ab}$
(13)	If $a = -1$	and $b =$	5 then $A \times H$ i	s equal to:- (v	where $A = A.M$ and $H = H.M$)
				(C) 5	
(14)	${}^{"}C_{r-1} + {}^{"}C_{r-1}$		qual to:-	(where C is	combination)
	and the second			(C) $^{n+1}C_{r-2}$	
(15)	(A) 0	of n whe	n $P_n = 11 \times 10$ (B) 1	× 9 is:- (V (C) 2 erm will be:- (A):	where <i>P</i> is permutation) (D) 3 81 (B) $54x^2$ (C) $26x^2$ (D) x^4
(16)			$> 3^n + 4$ is vali		0, (2) 2 (2) 2
(17)	(A) $n = 2$		(B) $n = 1$	(C) $n = -1$	(D) $n = -2$
(18)		-		(A) 30°	(B) 20° (C) 45° (D) 15"
(19)	(A) $\tan \alpha$		(B) $-\tan \alpha$	(C) $\cot \alpha$	(D) $-\cot \alpha$
(20)	Period of $\frac{\pi}{9}$	cot8x is:	(B) $\frac{\pi}{\cdot}$	(C) $\frac{\pi}{2}$	(D) π
	8		4	2	A mild Miles Statistics

15(Obj)(\$\frac{1}{2}\$ \$\frac{1}{2}\$)-2018(A)-13000 (MULTAN)

Paper				2	018 (A)		Roll No:		
Numb		196		MEDIAT		·I (11 th C			
MAT	HEMATIC	CS PA	PER-I				TIME ALLO		
Note:	: You have f	our choic	es for each	objective ty	CTIVE pe questio	n as A, B	C and D. Th	e choice whic	h you
think	is correct, fil	I that but	ble in fron	t of that que	estion num	ber. Use	marker or pe question. Atte	n to fill the b	ubbles.
questi	ons as given	in objecti	ve type que	estion paper	and leave	others bl	ank. No cred	it will be awa	rded in
Q.No.		e not fille	d. Do not	solve questi	ons on this	sheet of	OBJECTIVE	PAPER.	
		and $b = 5$	5 then $A \times$	H is equal	to:-	(where A	= A.M and l	H = H.M	
	(A) - 5		(B) $\frac{-5}{2}$	(C) 5		(D) $\frac{2}{5}$		
(2)	${}^{n}C_{r-1} + {}^{n}C$	r_{r-2} is equ	ual to:-		(where C	is combina	ation)		
	(A) ${}^{"}C_{r-1}$		(B) $^{n+1}C_r$	-1 ((C) $^{n+1}C_{r-}$	2	(D) ${}^{n}C_{r-2}$		
(3)							is permutation	n)	
(4)	(A) 0	lan ac /	(B) 1) Idla tama wil	(C) 2	191 /1	(D) 3 3) $54x^2$ (C)	$26x^2$ (D)	r4
(4)	The inequali					.) 61 (1	3) 34x (C)	201 (D)	^
(5)						D.	(D) $n = -2$		
(6)	The angle $\frac{7}{1}$	$\frac{7}{2}$ in degr	ee measure	is:-	(A) 30°	(B) 20°	(C) 45"	(D) 15"	
(7)	$\tan(\pi-\alpha)$, n		
(8)	(A) $\tan \alpha$ Period of c	ot $8x$ is:-	(B) – tan <i>a</i>		(C) cot α		(D) $-\cot \alpha$		
	0		4		2		(D) π		
(9)	In any trian	igle ΔΑΒΟ	, with usua	l notation,	$\sqrt{\frac{s(s-c)}{ab}}$	is equal	to:-		
	(A) $\sin \frac{\gamma}{2}$		(B) $\cos \frac{\gamma}{2}$		(C) $\sin \frac{\alpha}{2}$		(D) $\cos \frac{\alpha}{2}$		
(10)	In a right an (A) 90"	ngle triang	gle no angle (B) 30°	is greater th	an:- (C) 45"		(D) 60"		
(11)	The value of	of $\sin^{-1}\left(c\right)$	$\cos\frac{\pi}{6}$ is eq	ual to:-					
	(A) $\frac{\pi}{2}$		(B) $\frac{3\pi}{2}$		(C) $\frac{\pi}{6}$		(D) $\frac{\pi}{3}$		
(12)	If $\sin x = \frac{1}{2}$	$\frac{1}{2}$ then x	is equal to	0:-					
	0 0		0	$\frac{-5\pi}{6}$			(D) $\frac{-5\pi}{6}$		
(13)				ex number (-				2.0	
	$(A) \left(\frac{\sqrt{2}}{\sqrt{7}}, \right.$	$\frac{\sqrt{5}}{\sqrt{7}}$	(B) $\left(\frac{-\sqrt{2}}{\sqrt{7}}\right)$	$\left(\frac{2}{5}, \frac{-\sqrt{5}}{\sqrt{7}}\right)$	(C) $\left(\frac{\sqrt{2}}{7}\right)$	$\left(\frac{\sqrt{5}}{\sqrt{7}}\right)$	(D) $\left(\frac{\sqrt{2}}{7}, \frac{\sqrt{2}}{7}\right)$	$\left(\frac{\sqrt{5}}{7}\right)$	
(14)	If A , B a	re two set	s then $A \cap A$	$(A \cup B)$ equ	nals:-	(A) A	(B) $A \cup B$	(C) B	(D) ϕ
(15)	A square n	natrix A	is called ske	ew symmetri	$c ext{ if } A' =$				
	(A) A		(B) \overline{A}		(C) - A'		(D) - A		
(16)	(A) A If $\begin{vmatrix} 2 & \lambda \\ 3 & 7 \end{vmatrix}$	= 2, the	n λ =		(A)) 1 (B)	2 (C) 3	(D) 4	
(17)	A reciproc	al equatio	n, remains ι	inchanged w	hen variab	le x is re	eplaced by:-		
3457	(A) $\frac{-1}{x}$		2		(C) -x		A	((D) 7 (C)	((D) 7
(18)			+ x - 5 is a ctions are:-	divided by x	t + 1 then r	emainder Two	is:- (A) - (B) Three	o (B) / (C) (C) Four	(D) Infinite
(20)			ween a an	nd b is:-	(A	$\frac{ab}{a+b}$	(B) $\frac{a+b}{ab}$	(C) $\frac{2ab}{a+b}$	(D) $\frac{a-b}{ab}$

Panei	Code		2018 (A)	Roll No:
Numl	2198	INTERMEDIA	TE PART-I (11	th CLASS)
	THEMATICS PA	OBJE	ECTIVE	MAXIMUM MARKS: 20
Note think Cutti quest	: You have four choice is correct, fill that bub ng or filling two or mo- ions as given in objecti BUBBLES are not fille	es for each objective oble in front of that q re bubbles will result ve type question pap	type question as A uestion number. I in zero mark in the er and leave other	A, B, C and D. The choice which you Use marker or pen to fill the bubbles. hat question. Attempt as many is blank. No credit will be awarded in of OBJECTIVE PAPER.
(1)	A reciprocal equation,			
	(A) $\frac{-1}{x}$			
(2)		x - 5 is divided by x	+ 1 then remainde	r is:- (A) -6 (B) 7 (C) 6 (D) -7
(3)	Types of rational fracti	ions are:-	(A) I Wo	(B) Three (C) Four (D) Infinite $a + b = 2ab \qquad (B) a - b$
(4)	Harmonic Mean between	een a and b is:-	(A) $\frac{a}{a+b}$	(B) $\frac{a+b}{ab}$ (C) $\frac{2ab}{a+b}$ (D) $\frac{a-b}{ab}$
(5)				e A = A.M and H = H.M
	(A) - 5	(B) $\frac{3}{2}$	(C) 5	(D) $\frac{2}{5}$
(6)	${}^{"}C_{r-1} + {}^{"}C_{r-2}$ is equ	ual to:-	(where C is com	bination)
	(A) ${}^{n}C_{r-1}$			
(7)	The value of n when	$^{11}P_n = 11 \times 10 \times 9$ is	s:- (wher	e P is permutation)
Own.	(A) ()	(D) 1	(0) 0	(D) 3 (B) $54x^2$ (C) $26x^2$ (D) x^4
(8)				(B) $54x^2$ (C) $26x^2$ (D) x^3
(9)	The inequality $4^n > $ (A) $n = 2$		n is:- (C) $n = -1$	(D) $n = -2$
(10)	The angle $\frac{\pi}{12}$ in degr	ee measure is:-	(A) 30° (B)	20" (C) 45" (D) 15"
(11)				
(12)		(B) $-\tan \alpha$	(C) $\cot \alpha$	(D) $-\cot \alpha$
	(A) $\frac{\pi}{8}$	(B) $\frac{\pi}{}$	(C) $\frac{\pi}{2}$	(D) π
	0	4		
(13)	In any triangle $\triangle ABC$	C, with usual notation	$\sqrt{\frac{s(s-c)}{ab}}$ is eq	ual to:-
	(A) $\sin \frac{\gamma}{2}$	(B) $\cos \frac{\gamma}{2}$	(C) $\sin \frac{\alpha}{2}$	(D) $\cos \frac{\alpha}{2}$
(14)	2	le no angle is greater t	2	2
	(A) 90°	(B) 30°	(C) 45 ⁿ	(D) 60"
(15)	The value of $\sin^{-1} \left(\cos \frac{1}{2} \right)$	$\cos\frac{\pi}{6}$ is equal to:-		
	(A) $\frac{\pi}{2}$	(B) $\frac{3\pi}{2}$	(C) $\frac{\pi}{6}$	(D) $\frac{\pi}{3}$
(16)	If $\sin x = \frac{1}{2}$ then x	is equal to:-		
	$(A) \frac{\pi}{6}, \frac{5\pi}{6}$	(B) $\frac{-\pi}{6}$, $\frac{-5\pi}{6}$	(C) $\frac{-\pi}{6}$	(D) $\frac{-5\pi}{6}$
(17)	Multiplicative inverse	e of complex number	$(\sqrt{2}, -\sqrt{5})$ is:-	
				$) (D) \left(\frac{\sqrt{2}}{7}, \frac{\sqrt{5}}{7} \right)$
(18)	If A , B are two sets	then $A \cap (A \cup B)$ eq	uals:- (A)	A (B) $A \cup B$ (C) B (D) ϕ
(19)	A square matrix A i	s called skew symmetr	ric if $A^t = $	
	(A) A	(B) \overline{A}	(C) $-A'$	(D) - A
(20)	(A) A If $\begin{vmatrix} 2 & \lambda \\ 3 & 7 \end{vmatrix} = 2$, then	λ =	(A) 1	(B) 2 (C) 3 (D) 4

BOARD OF INTERMEDIATE AND SECONDARY EDUCATION, MULTAN OBJECTIVE KEY FOR INTERMEDIATE ANNUAL/SUPPLY EXAMINATION 2018

Grou	p: 1st						ssion:oup: 2nd	2017-		
Q.	Paper Code	Paper Code	Paper Code	Paper Cod	e	Q.	Paper Code	Paper Code	Paper Code	Paper
Nos	2191	2193	2195	2197		Nos	2192	2194		-
1	D	D	В	A	7	1	D	В	A	1
2	В	C	В	В	7	2	A	A	В.	1
3	В	A	A	D		3	D	D	D	
4	D	В	C	C	1	4	D	A	В	(
5	C	D	В	A	1	5	Ď	D	A	1
6	A	\mathcal{D}	\mathcal{D}	В		6	D	A	D	-
7	В	В	C	B		7	A	1)	B	1
8	D	B	A	Α .		8	C	D	A	1
9	C	D	В	C	1	9	A	D	B	
10	A	C	\mathcal{D}	В	1	10	В	D	A	D
11	B	A	\mathcal{D}	D	1	11	D	A	D	6
12	В	В	В	C	1 1	12	B	C	A	
13	h.	D	В	A		13	A	A	D	1
14	C	C	D	B	1	14	D	B	A	19
15	В	A	C	D	1	15	B	D	D	<i>H</i>
16	D	В	A	D	+ +	16	A	B	D	1
17	C	B	B	B	1 1	17		A		1
18	A	A.	$\overline{\mathcal{D}}$	B	1	18	B	7	D	
19	В	C	C	D	1	19	7		DA	/
20	D	B	A	C	1 1	20	A	B	C	
	-			سواليه پرچه امار کهٔ	المحق			A	C	
فنم المتحا	_ انٹرسالانہ ا	سك	S. L. L	مواليد پر چه امار د گ	بتن	بيفليت	_		1	
اگا .	Sot Tille	ر ۳ / دالری کر غیر	2	روپ ح	ظ عمرة ظ عمرة	-			تے مون کریے	۲.
- : :	، مطابق Set کید میں مطابق	JTVansia	، یہ پرچہ bus	ا چیک ترکیا ہے ماریکھ		ح) رد	ubjective &	Objectiv	نائیہ ومعروضی(e سریز بنظاط	یہ پرچہ ان
.0 <u>.</u>	، میں مطابقت رے متعلقہ ذری رہ	version	ے رکیا ہے۔ بیا ۔	vers کی چید د غلط	ion	اور اعریز به س	واليه پرچه کا اردو ا ت	ہے۔ہم ہے۔	م کی لوگی صفتی نه	به میں سی سے
بے	ے متعلق دفتر کی جانہ -	ے کانKey ا	مزید ہے کہ ہم نے تفور ا	لی مسکی نہ ہے۔	ستم کی کوہ	ما جھی سی	جاتی ہے کہ اس میر ف	بابت تصدیق کی	Key (MC)	عروضی(SS
	Rubrics/		يحصيلي مار كنك با	به ایکزامیز ز کیک	ـ نيز سـ	بنانی ہے.	روی میں Key	رکیا ہے اور ان کی	ن کا بغور مطالعه کر	ل کرے ا
repa	red & Che	cked By:					oated: <u>02</u>	-06-2	018	
S.#		Name	A CONTRACTOR OF THE PARTY OF TH	signation		Ins	titution	Mob	Mobile No Signa	
	Dr. Zay	car typol	AS	ociate	Gio	vt. E	merson C	olle 0300	-6900 X	1
2	Kansur	shi Talo	a As	Sociale	Gor	J. M	illat coll		1 1	
3 JAVEDIOBAL ANSM		In	Haziak	_	_	netars		- PAN		
	Nooru			Part	Gast	184	ege civi	orage .	6.000	Fran
1	NODI W	uan	198	so. Prof	Dir	res	MILT	.333	7649118 M	Mo
5										
Re-Ch	necked By	ئى غلطى نەپ-	لى ہے۔ سی متم کی کو	مے ممل طور پرتسلی کر	<u> عوالہ ۔</u>	ہرایات کے	رومنی "Key" اور			انے درجیا
									TXT	
	Muha	uned of	but Assu	or front	901	C/GoE	log1 0) SC	1 630/	3646 M	on!