

SSC PARTII (th CLASS)
MATHEMATICS (SCIENCE GROUP) GROUP-I

TIME ALLOWED: 2.10 Hours
SUBJECTIVE
MAXIMUM MARKS: 60
NOTE: - Write same question number
 and its part number on answer book, as given in the question paper.

SECTION -I $: 1 / 20$

2. Attempt any six parts.

(i) If $A=\left[\begin{array}{rr}3 & 0 \\ -1 & 2\end{array}\right]$ and $B=\left[\begin{array}{l}6 \\ 5\end{array}\right]$ then find $A B$
(ii) Define Singular Matrix.
(iii) Simplify. $\left(\frac{8}{125}\right)^{\frac{-4}{3}}$
$12=2 \times 6$

(iv) Find the value of x and y if
(v) Write in Scientific Notation. 416.9
(vi) Evaluate. $\log _{2} \frac{1}{128}$
(vii) Evaluate $\frac{x^{3} y-2 z}{x \xi}$ if
(viii) Define Surd.
(x) Factorize. $128 a m^{2}-242 a n^{2}$

3. Attempt any six parts.

() Find H.C.F of $39 x^{7} y^{3} z, 91 x^{5} y^{6} z^{7}$
(ii) Solve the equation. $\sqrt{3 x+4}=2$
(iii) Solve $|3 x+10|=5 x+6$
(iv) Define Collinear Points.

$12=2 \times 6$

$x=3, \quad y=-1, \quad z=-2$

-0 -
$128 \mathrm{am}^{2}-242 a \mathrm{n}^{2}-50 \%$ (ix)
 $39 x^{7} y^{3} z, 91 x^{5} y^{6} z^{7}$, (i)

$|3 x+10|=5 x+6$ -

(v) Find value of m and c by expressing $3 x+y-1=0$ in the form of $y=m x+c$
(vi) Find the distance between the pair of points. $A(-8,1), B(6,1)$ (vi)
(vii) Find the mid point between the points
 $A(7,2)$ and $B(9,2)$.
(viii) What is meant by S.A.S postualte?
(ix) In the given parallelogram $A B C D$ Find the value of x and m.

(

4. Attempt any six parts.

(i) What is meant by Converse of Theorems?
(ii) Can a triangle of lengths 3 cm , 4 cm and 5 cm be formed? Give reason.
(iii) Define Congruent Triangles.

Ff تأ大
(iv) In isosceles $\triangle P Q R$, find the value of x and y

(v) Define Pythagoras Theorem.

- (v)

-

(vi)
(vi) Find the value of x.
(vii) What is meant by Triangular Region?
(viii) Construct a $\triangle A B C$, in which $m \overline{A B}=4.2 \mathrm{~cm}, m \overline{B C}=3.9 \mathrm{~cm}, m \overline{C A}=3.6 \mathrm{~cm} \quad \stackrel{\rightharpoonup}{3} \cdot \mathrm{Z}$. $\triangle A B C$
(ix) Define Centroid.

(ix)

SECTION-II

$24=8 \times 3$ - ¢ ¢ ¢ NOTE: - Attempt any three questions. Question No. 9 is compulsory.
5.(A) Solve by Crammer's Rule.
(B) Simplify.

$$
4 x+y=9, \quad-3 x-y=-5 \quad \text { - }
$$

$\sqrt[3]{\frac{a^{l}}{a^{m}}} \times \sqrt[3]{\frac{a^{m}}{a^{n}}} \times \sqrt[3]{\frac{a^{n}}{a^{l}}}$
$\sqrt[3]{\frac{0.7214 \times 20.37}{60.8}}$
6 (الن (6)
6.(A) Use log table to find the value of

7.(A) Factorize. $x^{3}+48 x-12 x^{2}-64$
$x^{3}+48 x-12 x^{2}-64-7$
(B) Use Division Method to find the Square Root of

$$
4 x^{2}+12 x y+9 y^{2}+16 x+24 y+16
$$

8.(A) Solve

$$
\begin{equation*}
\frac{1}{2}\left(x-\frac{1}{6}\right)+\frac{2}{3}=\frac{5}{6}+\frac{1}{3}\left(\frac{1}{2}-3 x\right) \tag{الن}
\end{equation*}
$$

(B) Construct the $\triangle A B C$ and draw the bisectors of its angles. - (ب)

$$
m \overline{A B}=4.5 \mathrm{~cm}, \quad m \overline{B C}=3.1 \mathrm{~cm}, m \overline{C A}=5.2 \mathrm{~cm}
$$

9. Prove that the right bisectors of the sides of a triangle are concurrent.
Prove that the triangles on equal bases and of equal altitudes are equal in Area.

SSC PARTI（9th CLASS）

MATHEMATICS（SCIENCE GROUP）GROUP－II （f）

TIME ALLOWED：2．10 Hours
SUBJECTIVE
组 4．10＝
MAXIMUM MARKS： 60
NOTE：－Write same question number －个 and its part number on answer book，as given in the question paper．

SECTION－1 لو10）

2．Attempt any six parts．
（i）Define Symmetric Matrix．
（ii）Find the product of $\left[\begin{array}{ll}1 & 2\end{array}\right]\left[\begin{array}{l}4 \\ 0\end{array}\right]$
（iii）Simplify $(\sqrt{5}-3 i)^{2}$ and write in the form of $a+b i$
（iv）Evaluate．i^{27}
（v）Express in Scientific Notation． 5700
（vi）Find the value of x when $\log _{64} 8=\frac{x}{2}$
（vii）Simplify：$\frac{8 a(x+1)}{2\left(x^{2}-1\right)}$
（vii）Simplify．$\sqrt{21} \times \sqrt{7} \times \sqrt{3}$
（ix）Factorize． $128 \mathrm{am}^{2}-242 \mathrm{an}^{2}$
3．Attempt any six parts．
（i）Use factorization to find the square root．

- 走
（ii）Define Linear Equation．
-

（iii）Find the solution set of
（iv）What is meant by an Ordered Pair？
（v）Find the values of＇ m ＇ and＇c＇by expressing the given equation $x-2 y=-2$ in the form of $y=m x+c$
（vi）Find the distance between the given pairs of points．$A(-8,1), B(6,1)-$－
 line segment of the given pairs of points．$A(2,-6), B(3,-6)$
（viii）What is meant by（S．S．S．$\cong S . S . S$ ）？
（ix）Find the unknown values in the given figure．

$$
\begin{align*}
& 12=2 \times 6 \\
& 4 x^{2}-12 x+9 \\
& |3 x+10|=5 x+6 \tag{ii}
\end{align*}
$$

$$
\begin{equation*}
\log _{64} 8=\frac{x}{2} \text { x } \tag{vi}
\end{equation*}
$$

$$
\begin{equation*}
\sqrt{21} \times \sqrt{7} \times \sqrt{3} \quad \text { 企家 } \tag{vii}
\end{equation*}
$$

$$
\begin{equation*}
128 a m^{2}-242 a n^{2}-56 \% \tag{viii}
\end{equation*}
$$

4．Attempt any six parts．
（i）What is meant by Converse of Theorem？
（ii） $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 7 cm are not the lengths（ii） of a triangle．Give the reason in detail．
（iii）Define Proportion．
（iv）In the given figure $\triangle L M N, \overrightarrow{L A}$ bisects $\angle L$ ． If $m \overline{L M}=6 \mathrm{~cm}, m \overline{L N}=4 \mathrm{~cm}$ and $m \overline{M N}=8 \mathrm{~cm}$ then find $m \overline{M A}$ and $m \overline{A N}$

（v）State Converse of Pythagoras Theorem．
（vi）Find the value of unknown x in $\triangle A B C$ ．

－$m \overline{A N}$ ；$m \overline{M A}$ 解

（vii）Define Triangular Region．
为
（viii）Construct $\triangle A B C$ in which

$$
\begin{equation*}
m \overline{A B}=4.8 \mathrm{~cm}, \quad m \overline{B C}=3.7 \mathrm{~cm}, \quad m \angle B=60^{\circ} \quad \cup \cup \because \& A B C \text { औ. } \tag{vii}
\end{equation*}
$$

（ix）Define Circumcente of a Triangle．
At

SECTION－II

NOTE：－Attempt any three questions．Question No． 9 is compulsory．
5．（A）Solve by Cramer＇s Rule．

$$
2 x-2 y=4, \quad 3 x+2 y=6
$$

（ $ا$（ 1 ） 5
（B）Simplify．$\frac{2^{1 / 3} \times(27)^{1 / 3} \times(60)^{1 / 2}}{(180)^{1 / 2} \times(4)^{-1 / 3} \times(9)^{1 / 4}}$ $\frac{2^{1 / 3} \times(27)^{1 / 3} \times(60)^{1 / 2}}{(180)^{1 / 2} \times(4)^{-1 / 3} \times(9)^{1 / 4}} \sim u^{5} \quad$（ب）
6．（A）Use Log table to find the value of

$$
\frac{(438)^{3} \sqrt{0.056}}{(388)^{4}}
$$

（B）If $p=2+\sqrt{3}$ then find $p^{2}+\frac{1}{p^{2}}$

$$
-u_{0} \text { \{品解 } p^{2}+\frac{1}{p^{2}} p=2+\sqrt{3} \text {, (ب) }
$$

 factor of $x^{3}-k x^{2}+11 x-6$ ，then find the value of k
（B）Find square root by Division Method．
8．（A）Find the solution set of

$$
\frac{1}{2}\left(x-\frac{1}{6}\right)+\frac{2}{3}=\frac{5}{6}+\frac{1}{3}\left(\frac{1}{2}-3 x\right)
$$

$$
8
$$

（B）Construct $\triangle X Y Z$ and draw its medians．

$$
m \overline{X Y}=4.5 \mathrm{~cm}, \quad m \overline{Y Z}=3.4 \mathrm{~cm}, \quad m \overline{Z X}=5.6 \mathrm{~cm}
$$

 bisector of a line segment is equidistant from its end points．OR ：
 Prove that Parallelograms on the same base and between the same parallel lines（or of the same altitude） will be equal in area．

BOARD OF INTERMLDIATE AND SECONDARY EDUCATION,									
Name of Subject MATH 9th(s) Group: 1st					Session \qquad				
$\begin{aligned} & \text { Q } Q \text { Q } \\ & \text { Nos. } \end{aligned}$	$\begin{aligned} & \text { Paper } \\ & \text { Code } \end{aligned}$	$\begin{aligned} & \text { Paper } \\ & \text { Code } \end{aligned}$	Paper	Paper	$\begin{gathered} \text { Q. } \\ \text { Nos. } \end{gathered}$	Paper	Paper	$\begin{aligned} & \text { Paper } \\ & \text { Code } \end{aligned}$	$\begin{gathered} \text { Paper } \\ \text { Code } \end{gathered}$
	1191	1193	1195	1197		1192	1194	1196	1198
1.	A	D	D	C	1.	A	D	B	D
2.	A	B	A	C	2.	B	B	D	z
3.	C	C	A	B	3.	C	A	C	A
4.	A	B	D	D	4.	D	A	A	B
5.	C	A	D	A	5.	Z	A	B	D
6.	C	A	B	A	6.	A	B	D	C
7.	B	C	C	D	7.	B	C	B	A
8.	D	A	B	D	8.	D	D	A	B
9.	A	C	A	B	9.	C	F	A	D
10.	A	C	A	C	10.	A	A	A	B
11.	D	B	C	B	11.	B	8	B	A
12.	D	D	A	A	12.	D	D	C	A
13.	B	A	C	A	${ }^{13}$.	B	C	D	A
1.4	C	A	C	C	14.	A	A	Z	B
15.	B	D	8	A	15.	A	8	A	C
16.					16.				
17.					17.				
18.					\%				
19.					19.				
20.					28.				

