\qquad
INTERMEDIATE PART-II ($12{ }^{\text {th }}$ CLASS)
MATHEMATICS PAPER-II
TIME ALLOWED: 2.30 Hours
GROUP-I
SUBJECTIVE
MAXIMUM MARKS: 80
NOTE: - Write same question number and its part number on answer book, as given in the question paper.

SECTION-I

2. Attempt any eight parts.

$$
8 \times 2=16
$$

(i) Express the perimeter P of square as a function of its area A.
(ii) $\quad f(x)=-2 x+8$, then find $f^{-1}(x)$.
(iii) Evaluate $\lim _{x \rightarrow 0} \frac{\operatorname{Sin} 7 x}{x}$
(iv) Differentiate w.r.t. " x " $x^{-3}+2 x^{-3 / 2}+3$
(v) Find $\frac{d y}{d x}$ if $x y+y^{2}=2$
(vi) Find $\frac{d y}{d x}$ if $y=\tan h\left(x^{2}\right)$
(vii) Find $f^{\prime}(x)$ if $f(x)=e^{\sqrt{x}-1}$
(viii) Find y_{2} if $y=(2 x+5)^{3 / 2}$
(ix) Find $\frac{d y}{d x}$ if $y=a^{\sqrt{x}}$
(x) Write the product rule in derivative.
(xi) Differentiate w.r.t. " x ", $\frac{a+x}{a-x}$
(xii) Find $\frac{d y}{d x}$ if $x^{2}+y^{2}=4$
3. Attempt any eight parts. $8 \times 2=16$
(i) Use differential to find $\frac{d y}{d x}$ when $x^{2}+2 y^{2}=16$
(ii) Evaluate $\int \frac{1}{\sqrt{x}(\sqrt{x}+1)} d x \quad(x>0)$
(iii) Evaluate $\int(\sqrt{x}+1)^{2} d x$
(iv) Evaluate $\int \frac{\left(1+e^{x}\right)^{3}}{e^{x}} d x$
(v) Evaluate $\int \operatorname{cosec} x d x$
(vi) Evaluate $\int \frac{x^{2}}{4+x^{2}} d x$
(vii) Evaluate $\int_{0}^{3} \frac{d x}{x^{2}+9}$
(viii) Find the area between the x-axis and the curve $y=\operatorname{Cos} \frac{1}{2} x$ from $x=-\pi$ to π.
(ix) Solve the differential equation $\frac{d y}{d x}=-y$
(x) Evaluate $\int e^{-x}(\operatorname{Cos} x-\operatorname{Sin} x) d x$
(xi) Graph the solution set of linear inequality $5 x-4 y \leq 20$ in $x y$-plane.
(xii) Define Optimal Solution.

Attempt any nine parts.

4.

(i) Find an equation of the perpendicular bisector of the segment joining the points $A(3,5), B(9,8)$
(ii) Prove $a x+b y+c=0$ represents a straight line, where a, b and c are constants and a and b are not simultaneously zero.
(iii) Check whether the lines $4 x-3 y-8=0,3 x-4 y-6=0$ and $x-y-2=0$ are concurrent, if so find the point of concurrency.
(iv) Find the lines represented by $9 x^{2}+24 x y+16 y^{2}=0$ also find the angle between them.
(v) Show that the points $A(0,2), B(\sqrt{3},-1)$ and $C(0,-2)$ are vertices of a right triangle.
(vi) Find centre and radius of the circle $x^{2}+y^{2}-6 x+4 y+13=0$.
(vii) Find the length of the tangent drawn from the point $(-5,4)$ to the circle $5 x^{2}+5 y^{2}-10 x+15 y-131=0$
(viii) Prove the point of a parabola which is closest to the focus, is the vertex of the parabola.
(ix) Find foci and vertices of ellipse $4 x^{2}+9 y^{2}=36$
(x) Find α so that the vectors $2 \underline{i}+\alpha \underline{j}+5 \underline{k}$ and $3 \underline{i}+\underline{j}+\alpha \underline{k}$ are perpendicular.
(xi) A force $\vec{F}=7 \underline{i}+4 \dot{j}-3 \underline{k} \quad$ is applied at $P(1,-2,3)$. Find its moment about the point $Q(2,1,1)$
(xii) Find a vector whose magnitude is 4 and is parallel to $2 \underline{i}-3 \underline{j}+6 \underline{k}$.
(xiii) Prove that $\operatorname{Cos}^{2} \alpha+\operatorname{Cos}^{2} \beta+\operatorname{Cos}^{2} \gamma=1$ where α, β, γ are direction angles.

SECTION-II

NOTE: - Attempt any three questions.

$$
3 \times 10=30
$$

5.(a) Derive the formula $\lim _{x \rightarrow 0} \frac{\operatorname{Sin} x}{x}=1$
(b) If $y=\left(\operatorname{Cos}^{-1} x\right)^{2}$ prove that $\left(1-x^{2}\right) y_{2}-x y_{1}-2=0$
6.(a) Evaluate $\int \frac{\operatorname{Sin} x+\operatorname{Cos}^{3} x}{\operatorname{Cos}^{2} x \operatorname{Sin} x} d x$
(b) Find the area of the triangular region whose vertices are $A(5,3), B(-2,2), C(4,2)$
7. (a) Solve the differential equation $2 e^{x} \tan y d x+\left(1-e^{x}\right) \operatorname{Sec}^{2} y d x=0$
(b) Maximize $f(x, y)=x+3 y$ subject to the constraints $2 x+5 y \leq 30, \quad 5 x+4 y \leq 20, \quad x \geq 0, \quad y \geq 0$
8. (a) The tangent to a circle at any point of the circle is perpendicular to the radial segment at that point.
(b) Show that mid point of hypotenuse in a right triangle is equidistant from its vertices.
9.(a) Find focus, vertex and directrix of the parabola $(x-1)^{2}=8(y+2)$
(b) Prove that $\operatorname{Sin}(\alpha-\beta)=\operatorname{Sin} \alpha \operatorname{Cos} \beta-\operatorname{Cos} \alpha \operatorname{Sin} \beta$

