Roll No:

INTERMEDIATE PART-II (12th CLASS)

MATHEMATICS PAPER-II

GROUP-I

SUBJECTIVE

NOTE: - Write same question number and its part number on answer book,

as given in the question paper.

SECTION-I

 $8 \times 2 = 16$

(i) Express the perimeter
$$P$$
 of square as a function of its area A .

(ii) Evaluate
$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 - x}$$

(iii) Evaluate
$$\lim_{\theta \to 0} \frac{1 - \cos \theta}{\sin \theta}$$

(iv) Find
$$\frac{dy}{dx}$$
 by 1st principle $\frac{1}{\sqrt{x+a}}$

(v) Diff. w.r.t "x"
$$\frac{2x-3}{2x+1}$$

(vi) Find
$$\frac{dy}{dx}$$
 if $x^2 + y^2 - 4x = 5$

(vii) Find
$$\frac{dy}{dx}$$
 if $x = \theta + \frac{1}{\theta}$ and $y = \theta + 1$

(viii) Diff. w.r.t "
$$x$$
" :- $x^2 \sec 4x$

(ix) Diff.
$$ln(x^2 + 2x)$$
 w.r.t x

(x) If
$$y = x e^{\sin x}$$
 then find $\frac{dy}{dx}$

(xi) Find
$$y_2$$
 if $y = ln(x^2 - 9)$

Write Maclaurin's Series and Taylor's Series. (xii) Attempt any eight parts.

(i) Evaluate
$$\int \frac{dx}{\sqrt{x+1} - \sqrt{x}}$$

(ii) Find $\int \frac{1}{\sqrt{x+1}} dx$

(ii) Find
$$\int \frac{1}{1 + \cos x} dx$$

3.

(iii) Find
$$\int \ell nx \cdot x^5 dx$$

(iv) Find
$$\int Sec^4 x \, dx$$

(v) Evaluate
$$\int \frac{3x+1}{x^2-x+6} dx$$

(vi)
$$\int \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right) dx$$

(vii) Find
$$\int x \cos x \, dx$$

(viii)
$$\int_{1}^{1} \left(x^2 + 1\right) dx$$

(ix) Solve
$$y \, dx + x \, dy = 0$$

(x) Evaluate
$$\int_{-\pi}^{\pi} Sin x \, dx$$

- (xi) Define a Convex Region.
- Graph the solution of linear inequality $2x + y \le 6$ (xii)

 $8 \times 2 = 16$

TIME ALLOWED: 2.30 Hours

MAXIMUM MARKS: 80

Attempt any nine parts.

4.

 $9 \times 2 = 18$

 $3 \times 10 = 30$

5

5

5

5

- (i) Find the mid point of line segment joining the points $A\left(-\sqrt{5}, -\frac{1}{3}\right)$ and $B\left(-3\sqrt{5}, 5\right)$
- (ii) Let P(x, y) = (-6, 9) and axes are translated through 0'(-3, 2). Find X and Y.
- (iii) Reduce 5x 12y + 39 = 0 into two intercepts form.
- (iv) Find the point of intersection of lines x 2y + 1 = 0 and 2x y + 2 = 0
- (v) Find the angle between lines represented by $3x^2 + 7xy + 2y^2 = 0$
- (vi) Write standard form of equation of circle.
- (vii) Find the focus and vertex of $x^2 = -16y$
- (viii) Find the equation of tangent to the circle $x^2 + y^2 = 25$ at point (4, 3)
- (ix) Find the equation of ellipse with foci $(0, \pm 5)$ and eccentricity = $\frac{3}{5}$
- (x) Find the vector from point A to origin where $\underline{AB} = 4\underline{i} 2\underline{j}$ and B = (-2, 5)
- (xi) Find direction cosines of $\underline{v} = \underline{i} j \underline{k}$
- (xii) Find projection of \underline{a} along \underline{b} where $\underline{a} = \underline{i} \underline{k}$ and $\underline{b} = \underline{j} + \underline{k}$
- (xiii) Find $\underline{u} \times \underline{v}$ when $\underline{u} = [2, -1, 1]; \underline{v} = [4, 2, -1]$

SECTION-II

NOTE: - Attempt any three questions.

5.(a)	Given $f(x) = x^3 - ax^2 + bx + 1$ if $f(2) = -3$ and $f(-1) = 0$	
	find the values of a and b .	5
(b)	Find by definition derivative w.r.t. x if $(x + 4)^{\frac{1}{3}}$	5

	$\int Co \sec^3 x$	Evaluate	6.(a)
--	--------------------	----------	-------

7. (a)

(b) Find the distance between the lines x + 2y - 5 = 0, 2x + 4y - 1 = 0. Also find an equation of the line lying midway between them.

Evaluate
$$\int_{0}^{\frac{\pi}{4}} \frac{\cos\theta + \sin\theta}{1 + \cos 2\theta} \, d\theta$$
 5

(b) Maximize the function defined by f(x, y) = 2x + 3y subject to the constraints $2x + y \le 8$, $x + 2y \le 14$, $x \ge 0$, $y \ge 0$

8. (a)	Find an equation o	f the ellipse with Foci	(0, -1)) and ((0, -5)) and major axis of length 6.	5
--------	--------------------	-------------------------	---------	---------	---------	-------------------------------	---

(b) Prove that in any triangle ABC $a^2 = b^2 + c^2 - 2bc$ Cos A by vector method.

9.(a)	Find an equation of the parabola having its focus at the origin and directrix parallel to	
	the x -axis and below the x -axis.	5
(b)	Prove $Sin(\alpha - \beta) = Sin\alpha Cos\beta - Cos\alpha Sin\beta$	5

R.14-2015(A)- (MULTAN)