\qquad
INTERMEDIATE PART-II ($12^{\text {th }}$ CLASS)
MATHEMATICS PAPER-II
TIME ALLOWED: 2.30 Hours GROUP-I

SUBJECTIVE
MAXIMUM MARKS: 80
NOTE: - Write same question number and its part number on answer book, as given in the question paper.

SECTION-I

2. Attempt any eight parts.
(i) Express the perimeter P of square as a function of its area A.
(ii) Evaluate $\operatorname{Lim}_{x \rightarrow 1} \frac{x^{2}-1}{x^{2}-x}$
(iii) Evaluate $\operatorname{Lim}_{\theta \rightarrow 0} \frac{1-\operatorname{Cos} \theta}{\operatorname{Sin} \theta}$
(iv) Find $\frac{d y}{d x}$ by $1^{\text {st }}$ principle $\frac{1}{\sqrt{x+a}}$
(v) Diff. w.r.t " x " $\quad \frac{2 x-3}{2 x+1}$
(vi) Find $\frac{d y}{d x}$ if $x^{2}+y^{2}-4 x=5$
(vii) Find $\frac{d y}{d x}$ if $x=\theta+\frac{1}{\theta}$ and $y=\theta+1$
(viii) Diff. w.r.t " x " :- $\quad x^{2} \sec 4 x$
(ix) Diff. $\ln \left(x^{2}+2 x\right)$ w.r.t x
(x) If $y=x e^{\sin x}$ then find $\frac{d y}{d x}$
(xi) Find y_{2} if $y=\ln \left(x^{2}-9\right)$
(xii) Write Maclaurin's Series and Taylor's Series.
3.

Attempt any eight parts.
$8 \times 2=16$
(i) Evaluate $\int \frac{d x}{\sqrt{x+1}-\sqrt{x}}$
(ii) Find $\int \frac{1}{1+\cos x} d x$
(iii) Find $\int \ln x \cdot x^{5} d x$
(iv) Find $\int \operatorname{Sec}^{4} x d x$
(v) Evaluate $\int \frac{3 x+1}{x^{2}-x+6} d x$
(vi) $\int\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right) d x$
(vii) Find $\int x \cos x d x$
(viii) $\int_{1}^{2}\left(x^{2}+1\right) d x$
(ix) Solve $y d x+x d y=0$
(x) Evaluate $\int_{-\pi}^{\pi} \operatorname{Sin} x d x$
(xi) Define a Convex Region.
(xii) Graph the solution of linear inequality $2 x+y \leq 6$
4. Attempt any nine parts.
(i) Find the mid point of line segment joining the points $A\left(-\sqrt{5},-\frac{1}{3}\right)$ and $B(-3 \sqrt{5}, 5)$
(ii) Let $P(x, y)=(-6,9)$ and axes are translated through $0^{\prime}(-3.2)$. Find X and Y.
(iii) Reduce $5 x-12 y+39=0$ into two intercepts form.
(iv) Find the point of intersection of lines $x-2 y+1=0$ and $2 x-y+2=0$
(v) Find the angle between lines represented by $3 x^{2}+7 x y+2 y^{2}=0$
(vi) Write standard form of equation of circle.
(vii) Find the focus and vertex of $x^{2}=-16 y$
(viii) Find the equation of tangent to the circle $x^{2}+y^{2}=25$ at point $(4,3)$
(ix) Find the equation of ellipse with foci $(0, \pm 5)$ and eccentricity $=\frac{3}{5}$
(x) Find the vector from point A to origin where $\underline{A B}=4 \underline{i}-2 \underline{j}$ and $B=(-2,5)$
(xi) Find direction cosines of $\underline{v}=\underline{i}-\underline{j}-\underline{k}$
(xii) Find projection of \underline{a} along \underline{b} where $\underline{a}=\underline{i}-\underline{k} \quad$ and $\underline{b}=\underline{j}+\underline{k}$
(xiii) Find $\underline{u} \times \underline{v}$ when $\underline{u}=[2,-1,1] ; \underline{v}=[4,2,-1]$

SECTION-II

NOTE: - Attempt any three questions.

$$
\mathbf{3} \times \mathbf{1 0}=\mathbf{3 0}
$$

5.(a) Given $f(x)=x^{3}-a x^{2}+b x+1$ if $f(2)=-3$ and $f(-1)=0$ find the values of a and b.
(b) Find by definition derivative w.r.t. x if $(x+4)^{1 / 3} 5$
6.(a) Evaluate $\int \operatorname{Cosec}^{3} x d x$
(b) Find the distance between the lines $x+2 y-5=0, \quad 2 x+4 y-1=0$. Also find an equation of the line lying midway between them.

5
7. (a) Evaluate $\int_{0}^{\pi / 4} \frac{\operatorname{Cos} \theta+\operatorname{Sin} \theta}{1+\operatorname{Cos} 2 \theta} d \theta$
(b) Maximize the function defined by $f(x, y)=2 x+3 y$ subject to the constraints $2 x+y \leq 8, \quad x+2 y \leq 14, \quad x \geq 0, \quad y \geq 0$ 5
8. (a) Find an equation of the ellipse with Foci $(0,-1)$ and $(0,-5)$ and major axis of length 6 . 5
(b) Prove that in any triangle $A B C \quad a^{2}=b^{2}+c^{2}-2 b c \quad \operatorname{Cos} A$ by vector method. 5
9.(a) Find an equation of the parabola having its focus at the origin and directrix parallel to the x-axis and below the x-axis.
(b) Prove $\operatorname{Sin}(\alpha-\beta)=\operatorname{Sin} \alpha \operatorname{Cos} \beta-\operatorname{Cos} \alpha \operatorname{Sin} \beta$

