\qquad

INTERMEDIATE PART-I (11 ${ }^{\text {th }}$ CLASS)

MATHEMATICS PAPER-I GROUP-I

TIME ALLOWED: 2.30 Hours
SUBJECTIVE
MAXIMUM MARKS: 80

NOTE: - Write same question number and its part number on answer book, as given in the question paper.

SECTION-I

2. Attempt any eight parts.
(i) Simplify by justifying each step $\frac{\frac{a}{b}+\frac{c}{d}}{\frac{a}{b}-\frac{c}{d}}$.
(ii) Find modulus of $1-i \sqrt{3}$
(iii) Define Tautology and Absurdity.
(iv) Find inverse and range of $f=\{(2,1),(3,2),(4,3)\}$
(v) Show that $\sim(p \rightarrow q) \rightarrow p$ is a tautology.
(vi) If a and b are elements of a group ' G ' then show that $(a b)^{-1}=b^{-1} a^{-1}$
(vii) Find x and y if $\left[\begin{array}{cc}x+3 & 1 \\ -3 & 3 y-4\end{array}\right]=\left[\begin{array}{cc}y & 1 \\ -3 & 2 x\end{array}\right]$
(viii) Find the inverse of $\left[\begin{array}{ll}2 & 1 \\ 6 & 3\end{array}\right]$
(ix) Define Symmetric and Skew Symmetric Matrix.
(x) Evaluate $(-1+\sqrt{-3})^{5}+(-1-\sqrt{-3})^{5}$
(xi) Sum of a positive number and its reciprocal is $\frac{26}{5}$. Find the number.
(xii) Find four Fourth Roots of Unity.

Attempt any eight parts.

(i) Resolve into Partial Fraction of $\frac{1}{x^{2}-1}$
(ii) If a, b, c, d are in G.P, prove that $a^{2}-b^{2}, b^{2}-c^{2}, c^{2}-d^{2}$ are in G.P.
(iii) Sum the series $\frac{3}{\sqrt{2}}+2 \sqrt{2}+\frac{5}{\sqrt{2}}+-----+a_{13}$.
(iv) Which term of the A.P. $-2,4,10,------$ is 148 ?
(v) If 5 is the H.M. between 2 and b, find b.
(vi) Find the number of diagonals of 12 - sided figure.
(vii) How many arrangements of the letter of the word MATHEMATICS can be made?
(viii) Define Circular Permutation.
(ix) Prove that ${ }^{n} C_{r}={ }^{n} C_{n-r}$.
(x) Expand $(1-x)^{\frac{1}{2}}$ up to three terms.
(xi) State the Binomial Theorem.
(xii) Write the formula for finding The Middle Term in the expansion of $(a+x)^{n}$, if n is even.
4.

Attempt any nine parts.

(i) With usual notations if $\theta=65^{\circ} 20^{\prime} \quad r=18 \mathrm{~mm}, \quad \ell=$?
(ii) Prove that $\operatorname{Cot}^{2} \theta-\operatorname{Cos}^{2} \theta=\operatorname{Cot}^{2} \theta \operatorname{Cos}^{2} \theta$
(iii) Write the Fundamental Law of Trigonometry.
(iv) Prove that $\operatorname{Sin}\left(\theta+\frac{\pi}{6}\right)+\operatorname{Cos}\left(\theta+\frac{\pi}{3}\right)=\operatorname{Cos} \theta$
(v) Prove that $\frac{1-\operatorname{Cos} \alpha}{\operatorname{Sin} \alpha}=\tan \frac{\alpha}{2}$
(vi) Express $\operatorname{Cos} 12^{\circ}+\operatorname{Cos} 48^{\circ}$ as product.
(vii) Write the domain and range of $y=\operatorname{Cos} x$
(viii) Define the Angle of Elevation.
(ix) Solve $\triangle A B C$ if $\beta=60^{\circ}, \gamma=15^{\circ}, \quad b=\sqrt{6}$
(x) Find the smallest angle of $\triangle A B C$ when $a=37.34, b=3.24, c=35.06$
(xi) Show that $\operatorname{Cos}^{-1} \frac{12}{13}=\operatorname{Sin}^{-1} \frac{5}{13}$
(xii) Solve $\operatorname{Sin} x=\frac{1}{2} \quad$ in $[0,2 \pi]$
(xiii) Solve $\operatorname{Sec}^{2} \theta=\frac{4}{3} \quad$ in $[0,2 \pi]$

SECTION-II

NOTE: - Attempt any three questions.

5.(a) Solve by Crammer's Rule $\quad 2 x+2 y+z=3, \quad 3 x-2 y-2 z=1, \quad 5 x+y-3 z=2 \quad 5$
(b) Show that $(1+w)\left(1+w^{2}\right)\left(1+w^{4}\right)\left(1+w^{8}\right)-----2 n$ factors $=1 \quad 5$
6.(a) Resolve into Partial Fractions. $\frac{1}{(1-a x)(1-b x)(1-c x)}$

5
(b) Sum the series $3+5-7+9+11-13+15+17-19+------$ up to $3 n$ terms.
7.(a) How many numbers greater than 1000,000 can be formed from the digits $0,2,2,2,3,4,4$? 5
(b) If $y=\frac{1}{3}+\frac{1.3}{2!}\left(\frac{1}{3}\right)^{2}+\frac{1.3 .5}{3!}\left(\frac{1}{3}\right)^{3}+-----$ then prove that $y^{2}+2 y-2=0$
8.(a) Prove that $\operatorname{Sin}^{3} \theta-\operatorname{Cos}^{3} \theta=(\operatorname{Sin} \theta-\operatorname{Cos} \theta)(1+\operatorname{Sin} \theta \operatorname{Cos} \theta) \quad 5$
(b) Prove that $\frac{\operatorname{Sin} \theta+\operatorname{Sin} 3 \theta+\operatorname{Sin} 5 \theta+\operatorname{Sin} 7 \theta}{\operatorname{Cos} \theta+\operatorname{Cos} 3 \theta+\operatorname{Cos} 5 \theta+\operatorname{Cos} 7 \theta}=\operatorname{Tan} 4 \theta$
9.(a) Solve the triangle in which $a=7, \quad b=7, \quad c=9$
(b) Prove $\operatorname{Sin}^{-1} \frac{5}{13}+\operatorname{Sin}^{-1} \frac{7}{25}=\operatorname{Cos}^{-1} \frac{253}{325}$

