2015 (A)

Roll No:

INTERMEDIATE PART-I (11th CLASS)

MATHEMATICS PAPER-I GROUP-I

TIME ALLOWED: 2.30 Hours

 $8 \times 2 = 16$

MAXIMUM MARKS: 80

SUBJECTIVE

NOTE: - Write same question number and its part number on answer book, as given in the question paper.

SECTION-I

Simplify by justifying each step $\frac{\frac{a}{b} + \frac{c}{d}}{\frac{a}{a} - \frac{c}{c}}$. (i)

Attempt any eight parts.

Find modulus of $1 - i\sqrt{3}$ (ii)

2.

- Define Tautology and Absurdity. (iii)
- Find inverse and range of $f = \{(2, 1), (3, 2), (4, 3)\}$ (iv)
- Show that $\sim (p \rightarrow q) \rightarrow p$ is a tautology. (v)
- If *a* and *b* are elements of a group '*G*' then show that $(ab)^{-1} = b^{-1}a^{-1}$ (vi)
- Find x and y if $\begin{bmatrix} x+3 & 1 \\ -3 & 3y-4 \end{bmatrix} = \begin{bmatrix} y & 1 \\ -3 & 2x \end{bmatrix}$ Find the inverse of $\begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix}$ (vii)
- (viii)
- Define Symmetric and Skew Symmetric Matrix. (ix)
- Evaluate $(-1 + \sqrt{-3})^5 + (-1 \sqrt{-3})^5$ (x)
- Sum of a positive number and its reciprocal is $\frac{26}{5}$. Find the number. (xi)
- Find four Fourth Roots of Unity. (xii)

3. Attempt any eight parts.

Resolve into Partial Fraction of $\frac{1}{r^2-1}$ (i)

- If a, b, c, d are in G.P, prove that $a^2 b^2$, $b^2 c^2$, $c^2 d^2$ are in G.P. (ii)
- Sum the series $\frac{3}{\sqrt{2}} + 2\sqrt{2} + \frac{5}{\sqrt{2}} + ---- + a_{13}$. (iii)
- Which term of the A.P. -2, 4, 10, ------ is 148? (iv)
- If 5 is the H.M. between 2 and b, find b. (v)
- Find the number of diagonals of 12 sided figure. (vi)
- How many arrangements of the letter of the word MATHEMATICS can be made? (vii)
- Define Circular Permutation. (viii)
- Prove that ${}^{n}C_{r} = {}^{n}C_{n-r}$. (ix)
- Expand $(1-x)^{\frac{1}{2}}$ up to three terms. (x)
- State the Binomial Theorem. (xi)
- Write the formula for finding The Middle Term in the expansion of $(a + x)^n$, if *n* is even. (xii)

 $8 \times 2 = 16$

Attempt any nine parts.

- (i) With usual notations if $\theta = 65^{\circ} 20'$ r = 18 mm, $\ell = ?$
- Prove that $Cot^2\theta Cos^2\theta = Cot^2\theta Cos^2\theta$ (ii)
- Write the Fundamental Law of Trigonometry. (iii)

(iv) Prove that
$$Sin\left(\theta + \frac{\pi}{6}\right) + Cos\left(\theta + \frac{\pi}{3}\right) = Cos\theta$$

(v) Prove that
$$\frac{1 - \cos \alpha}{\sin \alpha} = \tan \frac{\alpha}{2}$$

- (vi) Express $Cos 12^{\circ} + Cos 48^{\circ}$ as product.
- Write the domain and range of y = Cos x(vii)
- (viii) Define the Angle of Elevation.
- Solve $\triangle ABC$ if $\beta = 60^\circ$, $\gamma = 15^\circ$, $b = \sqrt{6}$ (ix)
- Find the smallest angle of $\triangle ABC$ when a = 37.34, b = 3.24, c = 35.06(x)
- Show that $\cos^{-1}\frac{12}{13} = \sin^{-1}\frac{5}{13}$ (xi)
- (xii) Solve $Sin x = \frac{1}{2}$ in $[0, 2\pi]$
- (xiii) Solve $Sec^2\theta = \frac{4}{3}$ in $[0, 2\pi]$

SECTION-II

NOTE: - Attempt any three questions.

Solve by Crammer's Rule 2x + 2y + z = 3, 3x - 2y - 2z = 1, 5x + y - 3z = 25.(a)

- Show that $(1+w)(1+w^2)(1+w^4)(1+w^8) - 2n$ factors = 1 (b) 5
- 1

6.(a) Resolve into Partial Fractions.
$$\frac{1}{(1-ax)(1-bx)(1-cx)}$$
 5

(b) Sum the series
$$3+5-7+9+11-13+15+17-19+\dots$$
 up to $3n$ terms.

(b) If
$$y = \frac{1}{3} + \frac{1.3}{2!} \left(\frac{1}{3}\right)^2 + \frac{1.3.5}{3!} \left(\frac{1}{3}\right)^3 + \dots + \dots + 1$$
 then prove that $y^2 + 2y - 2 = 0$ 5

8.(a) Prove that
$$Sin^{3}\theta - Cos^{3}\theta = (Sin\theta - Cos\theta)(1 + Sin\theta Cos\theta)$$
 5

(b) Prove that
$$\frac{Sin\theta + Sin3\theta + Sin5\theta + Sin7\theta}{Cos\theta + Cos3\theta + Cos5\theta + Cos7\theta} = Tan4\theta$$
 5

9.(a) Solve the triangle in which a = 7, b = 7, c = 9

(b) Prove
$$Sin^{-1}\frac{5}{13} + Sin^{-1}\frac{7}{25} = Cos^{-1}\frac{253}{325}$$
 5

13-2015(A)-11000 (MULTAN)

- $3 \times 10 = 30$ 5
 - 5

5