\qquad

INTERMEDIATE PART-II ($12^{\text {th }}$ CLASS)

MATHEMATICS PAPER-II
GROUP-II SUBJECTIVE
TIME ALLOWED: 2.30 Hours
NOTE: - Write same question number and its part number on answer book, as given in the question paper.

SECTION-I

2.

Attempt any eight parts.

$$
8 \times 2=16
$$

(i) Find the perimeter P of a square as a function of its area A.
(ii) Evaluate $\lim _{h \rightarrow 0}(1-2 h)^{1 / h}$.
(iii) Find $f^{-1}(x)$ when $f(x)=(-x+9)^{3}$
(iv) Compute $\frac{d y}{d x}$ when $y=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^{2}$
(v) Find $\frac{d y}{d x}$ when $x^{2}+y^{2}-4 x=5$
(vi) Differentiate $(\operatorname{Sin} 2 \theta-\operatorname{Cos} 3 \theta)^{2}$ w.r.t. θ.
(vii) Find the derivative of $\frac{1}{a} \operatorname{Sin}^{-1}\left(\frac{a}{x}\right)$ w.r.t x.
(viii) Determine the derivative of $\log _{10}\left(a x^{2}+b x+c\right)$ w.r.t x.
(ix) Find $\frac{d y}{d x}$ when $y=\frac{e^{x}}{e^{-x}+1}$
(x) If $y=\operatorname{Sin} 3 x$, find y_{2}.
(xi) Using Taylor's series, expand $\operatorname{Cos}(x+h)$ upto two terms.
(xii) Define Critical Value of $f(x)$.
3.

Attempt any eight parts.

$$
8 \times 2=16
$$

(i) Find δy and $d y$ for the function defined as $y=\sqrt{x}$ when x changes from 4 to 4.41.
(ii) Evaluate $\int \frac{1}{\sqrt{x}(\sqrt{x}+1)} d x$
(iii) Evaluate $\int \frac{1-x^{2}}{1+x^{2}} d x$
(iv) Find $\int \operatorname{cosec} x d x$
(v) Evaluate $\int x e^{x} d x$
(vi) Evaluate $\int e^{a x}\left[a \operatorname{Sec}^{-1} x+\frac{1}{x \sqrt{x^{2}-1}}\right] d x$
(vii) Evaluate $\int_{0}^{\frac{\pi}{4}} \operatorname{Sec} x(\operatorname{Sec} x+\tan x) d x$
(viii) Evaluate $\int_{1}^{2} \ln x d x$
(ix) Find the area below the curve $y=3 \sqrt{x}$ and above the x-axis between $x=1$ to $x=4$
(x) Define order of the differential equation with one example.
(xi) What is an Objective Function?
(xii) Graph the solution set of the linear inequality in $x y$-plane:- $5 x-4 y \leq 20$
4. Attempt any nine parts.
(i) Find value of h such that the points $A(-1, h), B(3,2)$ and $C(7,3)$ are collinear.
(ii) The points $(4,-2),(-2,4)$ and $(5,5)$ are the vertices of a triangle. Find in-centre of the triangle.
(iii) Find the area of region bounded by the triangle with vertices $(a, b+c),(a, b-c)$ and ($-a, c$)
(iv) Find the equation of the perpendicular bisector joining points $A(3,5)$ and $B(9,8)$.
(v) Find K so that the line joining $A(7,3), B(K,-6)$ and line joining $C(-4,5), D(-6,4)$ are perpendicular.
(vi) Find an equation of the circle having the join of $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ as a diameter.
(vii) Which conics are called central conics?
(viii) Find centre and directrices of the ellipse whose equation is $\frac{(2 x-1)^{2}}{4}+\frac{(y+2)^{2}}{16}=1$
(ix) The point of a parabola which is closest to the focus is the vertex of the parabola.
(x) Find a and b so that the vectors $3 \underline{i}-\underline{j}+4 \underline{k}$ and $a \underline{i}+b \underline{j}-2 \underline{k}$ are parallel.
(xi) Prove that $\sin (\alpha-\beta)=\sin \alpha \operatorname{Cos} \beta-\operatorname{Cos} \alpha \sin \beta$
(xii) Find volume of tetrahedron whose vertices are $(2,1,8),(3,2,9),(2,1,4)$ and $(3,3,10)$
(xiii) A force of magnitude 6 units acting parallel to $2 \underline{i}-2 \underline{j}+\underline{k}$ displaces the point of application from $(1,2,3)$ to $(5,3,7)$. Find the work done.

SECTION-II

NOTE: - Attempt any three questions.

$$
3 \times 10=30
$$

5.(a) Prove that $\operatorname{Lim}_{x \rightarrow 0} \frac{a^{x}-1}{x}=\ell_{e} a$
(b) If $y=x^{4}+2 x^{2}+2$ then prove that $\frac{d y}{d x}=4 x \sqrt{y-1}$
6.(a) Evaluate $\int \sqrt{a^{2}+x^{2}} d x$
(b) Find an equation of the line through the point of intersection of the lines $\ell_{1}: 3 x-4 y-10=0$, $\ell_{2}: x+2 y-10=0$ and perpendicular to the line $\ell: 3 x-4 y+1=0$
7. (a) Evaluate $\int_{0}^{\pi / 4} \frac{\operatorname{Cos} x+\operatorname{Sin} x}{\operatorname{Cos} 2 x+1} d x$
(b) Graph the feasible region of linear inequalities $2 x+y \leq 10, \quad x+4 y \leq 12, \quad x+2 y \leq 10$
8. (a) Show that the lines $3 x-2 y=0$ and $2 x+3 y-13=0$ are tangents to the circle $x^{2}+y^{2}+6 x-4 y=0$
(b) Prove that the angle in a semicircle is a right angle.
9.(a) Find an equation of parabola with focus $(-3,1)$ and directrix $x-2 y-3=0$
(b) If $\underline{a}+\underline{b}+\underline{c}=0$, then prove that $\underline{a} \times \underline{b}=\underline{b} \times \underline{c}=\underline{c} \times \underline{a}$

