2015 (A)

INTERMEDIATE PART-II (12th CLASS) PER-II TIME ALLOWED: 2.30 Hours

Roll No:

MATHEMATICS PAPER-II

GROUP-II

SUBJECTIVE

NOTE: - Write same question number and its part number on answer book, as given in the question paper.

e question paper. SECTION-I

2. Attempt any eight parts.

- (i) Find the perimeter P of a square as a function of its area A.
- (ii) Evaluate $\lim_{h \to 0} (1 2h)^{\frac{1}{h}}$.

(iii) Find
$$f^{-1}(x)$$
 when $f(x) = (-x+9)^3$

- (iv) Compute $\frac{dy}{dx}$ when $y = \left(\sqrt{x} \frac{1}{\sqrt{x}}\right)^2$
- (v) Find $\frac{dy}{dx}$ when $x^2 + y^2 4x = 5$
- (vi) Differentiate $(Sin 2\theta Cos 3\theta)^2$ w.r.t. θ .

(vii) Find the derivative of
$$\frac{1}{a}Sin^{-1}\left(\frac{a}{x}\right)$$
 w.r.t x

(viii) Determine the derivative of
$$\log_{10}(ax^2 + bx + c)$$
 w.r.t x.

(ix) Find
$$\frac{dy}{dx}$$
 when $y = \frac{e^x}{e^{-x} + 1}$

(x) If
$$y = Sin 3x$$
, find y_2 .

- (xi) Using Taylor's series, expand Cos(x+h) upto two terms.
- (xii) Define Critical Value of f(x).

3. Attempt any eight parts.

(i) Find
$$\delta y$$
 and dy for the function defined as $y = \sqrt{x}$ when x changes from 4 to 4.41.

- (ii) Evaluate $\int \frac{1}{\sqrt{x}(\sqrt{x}+1)} dx$
- (iii) Evaluate $\int \frac{1-x^2}{1+x^2} dx$
- (iv) Find $\int Co \sec x \, dx$
- (v) Evaluate $\int x e^x dx$

(vi) Evaluate
$$\int e^{ax} \left[a \operatorname{Sec}^{-1} x + \frac{1}{x\sqrt{x^2 - 1}} \right] dx$$

(vii) Evaluate
$$\int_{0}^{\frac{\pi}{4}} Sec x (Sec x + \tan x) dx$$

(viii) Evaluate $\int_{1}^{2} ln x dx$

(ix) Find the area below the curve $y = 3\sqrt{x}$ and above the x-axis between x = 1 to x = 4

- (x) Define order of the differential equation with one example.
- (xi) What is an Objective Function?
- (xii) Graph the solution set of the linear inequality in xy plane:- $5x 4y \le 20$

$8 \times 2 = 16$

$$8 \times 2 = 16$$

MAXIMUM MARKS: 80

4.

Attempt any nine parts.

(2)

$9 \times 2 = 18$

- (i) Find value of h such that the points A(-1, h), B(3, 2) and C(7, 3) are collinear.
- (ii) The points (4, -2), (-2, 4) and (5, 5) are the vertices of a triangle. Find in-centre of the triangle.
- (iii) Find the area of region bounded by the triangle with vertices (a, b + c), (a, b c) and (-a, c)
- (iv) Find the equation of the perpendicular bisector joining points A(3, 5) and B(9, 8).
- (v) Find K so that the line joining A(7, 3), B(K, -6) and line joining C(-4, 5), D(-6, 4) are perpendicular.
- (vi) Find an equation of the circle having the join of $A(x_1, y_1)$ and $B(x_2, y_2)$ as a diameter.
- (vii) Which conics are called central conics?
- (viii) Find centre and directrices of the ellipse whose equation is $\frac{(2x-1)^2}{4} + \frac{(y+2)^2}{16} = 1$
- (ix) The point of a parabola which is closest to the focus is the vertex of the parabola.
- (x) Find a and b so that the vectors $3\underline{i} \underline{j} + 4\underline{k}$ and $a\underline{i} + b\underline{j} 2\underline{k}$ are parallel.
- (xi) Prove that $\sin(\alpha \beta) = \sin \alpha \cos \beta \cos \alpha \sin \beta$
- (xii) Find volume of tetrahedron whose vertices are (2, 1, 8), (3, 2, 9), (2, 1, 4) and (3, 3, 10)
- (xiii) A force of magnitude 6 units acting parallel to $2\underline{i} 2\underline{j} + \underline{k}$ displaces the point of application from (1, 2, 3) to (5, 3, 7). Find the work done.

SECTION-II

NOTE: - Attempt any three questions.

5.(a) Prove that $\lim_{x \to 0} \frac{a^x - 1}{x} = \ell_e a$

(b) If $y = x^4 + 2x^2 + 2$ then prove that $\frac{dy}{dx} = 4x\sqrt{y-1}$

- 6.(a) Evaluate $\int \sqrt{a^2 + x^2} dx$
 - (b) Find an equation of the line through the point of intersection of the lines ℓ_1 : 3x 4y 10 = 0, ℓ_2 : x + 2y - 10 = 0 and perpendicular to the line ℓ : 3x - 4y + 1 = 0

7. (a) Evaluate
$$\int_{0}^{\frac{\pi}{4}} \frac{\cos x + \sin x}{\cos 2x + 1} dx$$

(b) Graph the feasible region of linear inequalities $2x + y \le 10$, $x + 4y \le 12$, $x + 2y \le 10$

- 8. (a) Show that the lines 3x 2y = 0 and 2x + 3y 13 = 0 are tangents to the circle $x^2 + y^2 + 6x 4y = 0$
 - (b) Prove that the angle in a semicircle is a right angle.
- 9.(a) Find an equation of parabola with focus (-3, 1) and directrix x 2y 3 = 0
 - (b) If $\underline{a} + \underline{b} + \underline{c} = 0$, then prove that $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$

16-2015(A)-8000 (MULTAN)

 $3 \times 10 = 30$