Pape	er Code		201	5 (A) Roll	No
Number: 4474 INTERMEDIATE PART-II (12 th CLASS)					
GRC	DUP-II			ECTIVE	TIME ALLOWED: 20 Minutes MAXIMUM MARKS: 17
Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question. Attempt as many questions as given in objective type question paper and leave others blank. No credit will be awarded in case BUBBLES are not filled. Do not solve question on this sheet of OBJECTIVE PAPER. Q.No.1 (1) The magnitude of Plank's constant is:-					
	(A) 8.85	$\times 10^{-19} J.S$	(B) $6.63 \times 10^{-34} J.S$	(C) $6.62 \times 10^{-19} J.S$	(D) $0.53 \times 10^{-10} J.S$
(2)	The energy of the 4 th orbit in Hydrogen atom is:-				
	(A) - 2.5	51 <i>eV</i>	(B) $-3.50 eV$	(C) –13.6 <i>eV</i>	(D) $-0.85 eV$
(3)	During th	ne Fission of	one atom of U_{92}^{235} , the	e energy released is:-	
	(A) 200	MeV	(B) 100 <i>MeV</i>	(C) 60 <i>MeV</i>	(D) 28 <i>MeV</i>
(4)	Thyroid	cancer is cur	ed by:-		
	(A) Carl	bon – 14	(B) Sodium – 24	(C) Iodine – 131	(D) Cesium – 137
(5)	The elec	tric intensity	at infinite distance fro	m the point charge is:-	
	(A) Zero	1	(B) $1NC^{-1}$	(C) 1 volt – m^{-1}	(D) Infinite
(6)	Electric	flux $\Phi = \overline{B}$.	\overline{A} is maximum when	n 'θ' is:-	
	(A) 90°		(B) 45°	(C) 30°	(D) 0^{o}
(7)	(A) <i>I</i> =	R/V	atically expressed as:- (B) $I = \frac{V}{R}$	(C) $I = RV$	(D) $I = RV^2$
(8)	(A) Web	-	ic induction is:- (B) Gauss	(C) Tesla	(D) Tesla . m^2
(9)			$\frac{1}{2\pi r}$ is called:-	(c) resia	(D) resta : In
(-)	(A) Lenz	/	$2\pi r$ (B) Gauss's law	(C) Ampere's law	(D) Faraday's law
(10)	The energy stored in an inductor is:-				
	(A) LI^2			(C) $\frac{1}{2}L^2 I$	(D) IL^{2}
(11)		y of A.C. in I	2	2	
(11)	(A) 100	-	(B) 60 cps	(C) 120 cps	(D) 50 cps
(12)	If V_o is the peak value of alternating voltage, the rms value is:-				
	(A) $\frac{v_o}{\sqrt{2}}$		(B) $\sqrt{2}v_o$		(D) $\frac{\sqrt{2}}{v_o}$
(13)	The phas	e at the posit	ive peak is:-		
	(A) <i>π</i>		(B) $\frac{\pi}{2}$	(C) $\frac{3\pi}{2}$	(D) 2π
(14)	Nm^{-2} is				
	(A) Ohn		(B) Ampere	(C) Volt	(D) Pascal
(15)	The number of valance electrons in <i>Ge</i> are:-				
	(A) 3		(B) 4	(C) 5	(D) 2
(16)		ge rectifier ci	rcuit, the number of d		
((A) 4		(B) 2	(C) 3	(D) 1
(17)			th the speed of light, it		
	(A) Equ	al to its rest r	nass (B) Double of i	ts rest mass (C) Four	r times of its rest mass (D) Infinite

20(OLD SCHEME)(Obj)(**PP**)-2015(A)- (MULTAN)