Paper Code		2015 (A) Ro		Roll No	
Number: 2471 INTERME		INTERMEDIATE PAR	RT-I (11 th CLAS	S)	
PHYSICS PAPER-I GROUP-I Note: You have four choi think is correct, fill that cin Cutting or filling two or m as given in objective type q BUBBLES are not filled		(OLD SCHEME) <u>OBJECTIV</u> bices for each objective type q ircle in front of that question nore circles will result in zero question paper and leave other Do not solve question on this	TI <u>VE</u> M uestion as A, B, C number. Use mar mark in that ques ers blank. No cred	TIME ALLOWED: 20 Minutes MAXIMUM MARKS: 17 A, B, C and D. The choice which you Use marker or pen to fill the circles. hat question. Attempt as many questions No credit will be awarded in case	
Q.No.1					
(1)	The number 0.002	23 in scientific notation can be $(D) = 0.22 - 10^{-2}$	expressed as:-		
	(A) 23×10^{-1}	(B) 0.23×10^{-2}	(C) 2.3×10^{-5}	(D) 23×10^{-10}	
(2)	The SI unit of coe	efficient of viscosity is:-			
	(A) $Kg m^{-2} s^{-1}$	(B) $Kg m^{-1}s^{-1}$	(C) $Kg m^{-1}s^{-2}$	(D) $Kg ms$	
(3)	The magnitude of the resultant of two forces is F. The magnitude of each force is also F.				
	The angle betwee	en the forces must be:- (A) 60	0° (B) 90° ((C) 120° (D) 180°	
(4)	Tick the correct r	elation.			
	(A) $\hat{i} \times \hat{j} = -\hat{k}$	(B) $\hat{i} \times \hat{j} = 0$	(C) $\hat{j} \times \hat{i} = \hat{k}$	(D) $\hat{i} \times \hat{j} = \hat{k}$	
(5)	At highest point,	the vertical component of veloc	city of projectile be	comes:-	
	(A) Maximum	(B) Zero	(C) Minimum	(D) Vi Cos θ	
(6)	1 Kilowatt hour is	equal to:-			
	(A) $3.6 \times 10^6 J$	(B) 3.6 <i>M J</i>	(C) $36 \times 10^5 J$	(D) All of these	
(7)	Moment of inertia I is given by:-				
	(A) mr	(B) mr^2	(C) $m^2 r^2$	(D) mr^{3}	
(8)	Angular acceleration is produced by:-				
	(A) Power	(B) Torque	(C) Pressure	(D) Force	
(9) When droplet has terminal velocity, the acceleration is:-					
	(A) Zero	(B) Variable	(C) $980 cm s^{-2}$	(D) $9.8 m s^{-2}$	
(10)	Total energy of a H	Particle executing SHM at any c	displacement x is g	given by:-	
	(A) <i>K x</i>	(B) $\frac{1}{2}Kx$	(C) $\frac{1}{2}Kx_0^2$	(D) $K x_0^2$	
(11)	Velocity of sound	is independent of:-	2		
	(A) Temperature	(B) Density	(C) Medium	(D) Pressure	
(12)	The distance betw	een two adjacent nodes and ant	tinodes is:- (A) $\frac{2}{2}$	$\frac{\lambda}{4}$ (B) $\frac{\lambda}{2}$ (C) λ (D) 2λ	
(13)	Polarization of light proves that light waves are:- (A) Electromagnetic waves				
	(B) Longitudinal waves (C) Transverse waves (D) Very fast moving waves				
(14)	Newton's rings ar	e formed due to:-			
	(A) Diffraction	(B) Polarization	(C) Interference	(D) Resonance	
(15)	The unit of power	of a lens is:- (A) Metre	(B) Watt (C) Newton (D) Diopter	
(16)	(16) Efficiency of Carnot Engine depends on the:-				
	(A) Difference in	temperature of hot and cold res	ervoir (B) Nature	e of working substance	
(17)	(C) Temperature of	t hot reservoir (D) Temperature of cold reservoir			
(17)	The equation W	$= -\Delta \mu$ represents:-			
	(A) Isothermal Pro	ocess (B) Adiabatic Process	(C) Isobaric Proce	ss (D) Isochoric Process	

17(Obj)(**OLD SCHEME**)(**P**)-2015(A)- (**N**

(MULTAN)