Paper	Code			2015 (A)		Roll	No		
Numb	oer: 24	181	INTERME	DIATE PA	RT-I (11 th (CLASS))		
CHEN	MISTRY	PAPE	R-I (OLD SO	CHEME)		TIMI	E ALLOWE	D: 20 Minutes	
GRO				OBJECTIV	VE		XIMUM MA		
think is Cutting as give	s correct, fil g or filling t n in objecti LES are not	ll that cir wo or m ve type q	ces for each obj rcle in front of t ore circles will b question paper a Do not solve qu	hat question result in zero and leave other	number. Us mark in tha ers blank. N	e marker t question o credit v	or pen to fill n. Attempt as vill be award	the circles. many questions	
(1)	Mass of 6.	02×10^{23}	electrons is:-	(A) 1.008	mg (B) 0.	55 mg ((C) 1.184 mg	(D) 1.673 mg	
(2)	The largest number of Molecules are present in:-								
	(A) $2.8 g$ of CO (B) $4.8 g$ of $C_2 H_6 O$ (C) $3.6 g$ of $H_2 O$ (D) $5.4 g$ of $N_2 O_5$								
(3)	The comparative rates at which the solutes move in paper chromatography, depend upon:-								
	(A) Temp	(A) Temperature of solvent				(B) Size of chromatographic tank			
	(C) Size of chromatographic paper				(D) Retarda	tion facto	r		
(4)	The partial pressure of Hydrogen (H_2) gas in a mixture of 2g Hydrogen and 16g Oxygen (O_2)								
	gases is pr	coportion	al to:-	(A) $\frac{1}{4}$	(B) $\frac{1}{6}$	(C) $\frac{2}{2}$	(D) $\frac{2}{16}$		
(5)	The critical temperature of non-ideal gas:- (A) Depends on its critical pressure								
	(B) Depends on its intermolecular forces (C) Does not depend on nature of gas (D) Does not exist								
(6)	HF is the weakest acid among Hydrides of Halogens, due to:- (A) High electronegativity of fluorine								
	(B) London dispersion forces (C) Dipole-dipole attraction (D) Hydrogen bonding								
(7)	One atmo	spheric p	oressure at sea-le	evel is:-					
	(A) 760 to	orr	(B) 760	Nm^{-2}	(C) 760 cm	Нg	(D) 1000 Pas	scal	
(8)	Maximum	number	of electrons in a	n orbital is:-	(A) 2	(B) 6	(C) 10	(D) 14	
(9)	Quantum	Quantum numbers of $3f$ subshell are:-							
	(A) $n = 3$	$\ell = 0$	(B) $n =$	$= 3, \ \ell = 1$	(C) $n = 0$,	$\ell = 3$	(D) $n = 3$, ℓ	$e^2 = 3$	
(10)	Geometry of Ethyne (C_2H_2) molecule is:-								
	(A) Tetrah	edral	(B) Tri	gonal planar	(C) Linear		(D) Non-line	ear	
(11)	Among the halides of Hydrogen has highest ionic character.								
	(A) HBr		(B) HO	$C\ell$	(C) HF		(D) <i>HI</i>		
(12)	The heat o	f reaction	n at a particular t	emperature an	d at constant	volume is	S:-		
	(A) Enthal	py Chang	ge (B) Hea	at Capacity	(C) Internal	Energy	(D) Internal	Energy Change	
(13)			out the followin						
	$2SO_{2(g)} + O_{2(g)} \implies 2SO_{3(g)}, \Delta H = -188 kJ$								
(14)	(C) The ca	talyst V_2	O_5 increase the early for pure water is c	extent of reactions to:-	ion (D) Val (A) 18 M (E	ue of <i>Kp</i> 3) 55.5 M	is equal to va (C) 18 m	(D) 55.5 ppm	
(15)	4	ve ioweri	ng of vapour pre					H_2O is:-	
	(A) $\frac{1}{51}$		(B) $\frac{1}{5}$		(C) 5.1		(D) 1.5		
(16)	If Copper s	If Copper strip is placed in an aqueous solution of $FeSO_4$:- (A) Copper will be precipitated out							
		B) Iron will be precipitated out (C) Both Copper and Iron will dissolve (D) No reaction will occur							
(17)	Order of re	Order of reaction is 3 for $A + B \rightarrow C$, rate law would be:- (A) Rate = $K[A][B][C]$							
	(B) Rate=	$K[A]^3$	(C) Rate = $K[A$	$[B]^{2}$ $[B]^{2}$ (D)	Rate = K[A]	$[B]^3$	C^{3}		
				21(Obj)(OLD	SCHEME)	(P)-2015	(A)-	(MULTAN)	