Pape	er Code	20	15 (A)	Roll No
Num	16er: 8187	INTERMEDIA	TE PART-II (12 th (CLASS)
STA	TISTICS PAPI	ER-II (NEW SCI	HEME)	TIME ALLOWED: 20 Minutes
			<u>ECTIVE</u>	MAXIMUM MARKS: 17
Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question. Attempt as many questions as given in objective type question paper and leave others blank. No credit will be awarded in case BUBBLES are not filled. Do not solve question on this sheet of OBJECTIVE PAPER. Q.No.1				
(1)	The value of Chi squ	are may be:-		
	(A) Zero	(B) Positive	(C) Negative	(D) A and B but not C
(2)	The components of t	ime series are:-		
	(A) Four	(B) Three	(C) Two	(D) One
(3)	A second degree par			
	(A) Two constants	(B) Three constants	(C) 2 or 3 constants	(D) Less than 2 constants
(4)	01 Byte =			
	(A) 4 Bits	(B) 6 Bits	(C) 8 Bits	(D) 10 Bits
(5)	In a Normal Distribu	tion β_2 is equal to:-	_4	2 - 4
	(A) $3\sigma^4$	(B) 3	(C) $\frac{\sigma^4}{2}$	(D) $\frac{3\sigma^4}{4}$
(6)	The coefficient of sk	kewness of Normal Dis	stribution is:-	
	(A) Zero	(B) Positive	(C) Negative	(D) Both positive and negative
(7)	In normal curve the	ordinate is highest at:-		
	(A) Mean	(B) Median	(C) Mode	(D) All of these
(8)	If $\sigma^2 = 5$ and $n =$	2 then $\sigma_{\overline{x}}^2$ is:-		
	(A) 2	(B) 2.5	(C) 3	(D) 5
(9)	The possible samples	s in sampling without r	eplacement is:-	
	(A) $N-n$	(B) $N+n$	(C) $\overset{N}{C}$	(D) $(N)^n$
(10)	A value calculated fr	om population is calle	d a:-	
	(A) Statistic	(B) Mean	(C) Parameter	(D) Proportion
(11)	For unbiasedness:-			
	(A) $E(\overline{X}) \neq \mu$	(B) $E(\overline{X}) + \mu$	(C) $E(\overline{X}) = \mu$	(D) $E(\overline{X}) - \mu$
(12)	The hypothesis which is to be tested for possible rejection is:-			
	(A) Simple	(B) Composite	(C) Null	(D) Alternative
(13)	Two-tailed Test is us	sed if:-		
	(A) $H_1: \mu < \mu_0$	(B) $H_1: \mu > \mu_0$	(C) $H_1: \mu \neq \mu_0$	(D) None of these
(14)	In regression $\sum \hat{Y}$ is	s equal to:-		
	(A) 0	(B) ΣY	(C) a	(D) hX
(15)		n the slope of the line		
(10)	(A) 2	(B) 2.6	(C) 0.6	(D) Zero
(16)		(B) 2.0		
(10)	(A) 1	(B) Zero	(C) – 1	(D) -1 and $+1$
(17)				
(17)	For a contingency table of order $r \times c$ the number of degree of freedom is equal to:- (A) rc (B) $(r-1)(c)$ (C) $(c-1)(r)$ (D) $(r-1)(c-1)$			-
	(A) <i>rc</i>			
38(NEW SCHEME)(Obj)(PPPP)-2015(A)-2700 (MULTAN)				