Pap	er Code]		
Nun	nber: 8488		015 (A)	Roll No
INTERMEDIATE PART-II (12th CLASS)CHEMISTRY PAPER-II (NEW SCHEME)TIME ALLOWED: 20 MinutesGROUP-IIOBJECTIVEMAXIMUM MARKS: 17Note: You have four choices for each objective type question as A, B, C and D. The choice which youMAXIMUM MARKS: 17Note: You have four choices for each objective type question as A, B, C and D. The choice which youthink is correct, fill that circle in front of that question number. Use marker or pen to fill the circles.Cutting or filling two or more circles will result in zero mark in that question. Attempt as many questionsas given in objective type question paper and leave others blank. No credit will be awarded in caseBUBBLES are not filled. Do not solve question on this sheet of OBJECTIVE PAPER.				
Q.No.1 (1) The brown gas formed, when metal reduces HNO_3 , is:-				
	(A) $N_2 O_5$	(B) $N_2 O_3$	(C) NO_2	(D) <i>NO</i>
(2)		ooling medium for nucl		
(_)		(B) <i>He</i>		(D) <i>Kr</i>
(3)	. ,	r of Pt in $\int Pt C\ell(NC)$	_	
(5)	(A) 2	(B) 4	(C) 1	(D) 6
(A)				(D) 0
(4)	In <i>t</i> -butyl alcohol, the tertiary carbon is bonded to:- (A) Two <i>H</i> -atoms (B) Three <i>H</i> -atoms (C) One <i>H</i> -atom (D) No <i>H</i> -atom			
(5)		artificially ripening o		
(3)	(A) Methane	(B) Ethane	(C) Ethyne	(D) Propyne
(6)		uromatic sulphonation	· · ·	
(0)	(A) H_2SO_4	-	(C) SO_3	(D) SO_3^{+1}
(7)				$(D) 50_3$
(7)	Elimination bimolecular reactions involve:- (A) 1 st order Kinetics (B) 2 nd order Kinetics (C) 3 rd order Kinetics (D) Zero order Kinetics			
(9)	(A) 1 order Kinetics (B) 2 order Kinetics (C) 3 order Kinetics (D) Zero order Kinetics According to Lewis concept ethers behave as:-			
(8)	(A) Acid	(B) Base	(C) Electrophile	(D) Acid as well as a base
(9)		(D) Dase	· · ·	(D) Acid as well as a base
(\mathcal{I})	(A) <i>sp</i>	(B) sp^2		(D) dsp^2
(10)		· / •		(D) usp
(10)	will react with both Aldelyde and Ketones.			
(11)	(A) Grignard reagent (B) Tollen's reagent (C) Fehling solution (D) Bendict's solution Acetic acid is manufactured by:-			
(11)	(A) Distillation	(B) Fermentation	(C) Ozonolysis	(D) Esterification
(12)	The reaction between Fat and <i>NaOH</i> is called:-			
(12)	(A) Esterification		(C) Fermentation	(D) Saponification
(13)			althy growth of plants.	
(15)			(C) N, P, K	
(14)	The pH range of the a		(0) 11,1 ,1	(b) 11, K, C
(14)		(B) $6.5 - 6$	(C) 6 - 56	(D) Less than 5
(15)		size of atoms, which o		
(10)	1 0	-	(C) $Lu > Ce$	(D) $C\ell > I$
(16)		g to Alkaline-earth me		
(10)	(A) <i>Be</i>		(C) <i>Ba</i>	(D) <i>R n</i>
(17)				
(17)	metal is used in the thermite process because of its reactivity. (A) Iron (B) Copper (C) Aluminum (D) Zinc			
24(NEW SCHEME)(Obj)(PPPP)-2015(A)-8000 (MULTAN)				
$2\pi (112 \text{ W SCHEME}) (OUJ) (E E E J-2013 (A)-8000 (WULTAN)$				