Paper Code			2015 (A)	Roll No		
Number: 6485 INTERMEDIATE PART-I (11 th CLASS)						
CHEMISTRY PAPE GROUP-I		R-I (NEW SCHEME) <u>OBJECTIVE</u>		TIME ALLOWED: 20 Minutes MAXIMUM MARKS: 17		
Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question. Attempt as many questions as given in objective type question paper and leave others blank. No credit will be awarded in case BUBBLES are not filled. Do not solve question on this sheet of OBJECTIVE PAPER.						
Q.No.1						
(1)	In ground state of an atom, the electron is present:-					
	(A) In the nucleus (B) In the second shell (C) Nearest to nucleus (D) Farthest from the nucleus					
(2)	Orbitals having same energy are called:- (A) Hybrid orbitals (B) Valence orbitals (C) Degenerate orbitals (D) d-orbitals					
(3)	molecule has zero dipole moment. (A) NH_3 (B) $CHC\ell_3$ (C) H_2O (D) BF_3					
(4)	is the Hydrogen halide which has the highest percentage of Ionic character.					
	(A) <i>HCl</i>	(B) <i>Hl</i>	Br	(C) HF	(D) <i>HI</i>	
(5)	If an endothermic reaction is allowed to take place very rapidly in the air, the temperature of the surrounding air:- (A) Remains constant (B) Increases (C) Decreases (D) Remains unchanged					
(6)	5) Which statement about the following equilibrium is correct:-					
	$2SO_2 + O_2 \implies 2SO_3 \qquad \Delta H = -183 \text{KJ mol}^{-1}$					
	(A) The value of Kp falls with rise in temperature (B) The value of Kp falls with increasing pressure					
(C) Adding V_2O_5 catalyst increase the yield of SO_3 (D) The value of Kp is equal to Kc						
(7)	The pH of 10^{-3} mole dm^{-3} of an aqueous solution of H_2SO_4 is:- (A) 3.0 (B) 2.7 (C) 2.0 (D) 1.5					
(8)	The molal boiling point constant is the ratio of the elevation in boiling point to:-					
	(A) Molarity (B) Molality (C) Mole fraction of solvent (D) Mole fraction of solute					
(9)	Stronger the oxidizing agent, greater is the:-					
	(A) Oxidation potential (B) Reduction potential (C) Redox potential (D) E.M.F. of cell					
(10)	If the rate equation of a reaction $2A + B \rightarrow \text{product is}$, rate = $K[A]^2[B]$ and A is present in large excess, then order of reaction is:- (A) 1 (B) 2 (C) 3 (D) 4					
(11)	The mass of one mole of electron is:- (A) 1.008 mg (B) 0.55 mg (C) 0.184 mg (D) 1.673 mg					
(12)	The largest number of molecules are present in:-					
(13)	(A) 3.6 g of H_2O The comparative i	(B) 4.8 rates at which th	$G g of C_2 H_5 OH$	(C) 2.8 g of <i>CO</i> er chromatography den	(D) 5.4 g of N_2O_5	
(15)	(A) The size of pap	per (B) Rf val	ue of solutes (C) Ter	nperature (D) Size of	chromatographic tank	
(14)	The molar volume	e of CO_2 is max	timum at:-			
	(A) STP	(B) 12 [°]	$7^{\circ}C$ and 1atm	(C) $0^{\circ}C$ and 2atm	(D) $273^{\circ}C$ and 2atm	
(15)	The deviation of a	gas from ideal b	ehaviour is maximum	at:- (A) $-10^{\circ}C$	and 5.0 atm	
	(B) $-10^{\circ}C$ and 2.	0 atm	(C) $100^{\circ}C$ and 2.0 a	tm (D) 0^{0}	C and 2.0 atm	
(16)	NH_3 shows a maximum	imum boiling po	pint among the hydride	es of Vth group element	ts due to:-	
	(A) Very small size of Nitrogen (B) Lone pair of electrons present on Nitrogen					
	(C) Pyramidal Structure of NH_3 (D) Enhanced electronegative character of Nitrogen					
(17)	Ionic solids are cha	racterized by:-	(A) Low melting po	int		
	(B) High vapour pressure (C) Good conductivity in solid state (D) Solubility in polar solvents					
21(Obj)(NEW SCHEME)(PPP)-2015(A)-20000 (MULTAN)						