Pape	er Code	20	15 (A)	Roll No
Num	ber: 8183	INTERMEDIAT	TE PART-II (12th C	CLASS)
STA	FISTICS PAPE	ER-II (NEW SCH <u>OBJ</u>	HEME) <u>ECTIVE</u>	TIME ALLOWED: 20 Minutes MAXIMUM MARKS: 17
Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question. Attempt as many questions as given in objective type question paper and leave others blank. No credit will be awarded in case BUBBLES are not filled. Do not solve question on this sheet of OBJECTIVE PAPER. Q.No.1				
(1)	The possible sample	s in sampling without r	eplacement is:-	
	(A) $N-n$	(B) $N+n$	(C) $\overset{N}{C}$	(D) $(N)^n$
(2)	A value calculated from population is called a:-			
	(A) Statistic	(B) Mean	(C) Parameter	(D) Proportion
(3)	For unbiasedness:-			
	(A) $E(\overline{X}) \neq \mu$	(B) $E(\overline{X}) + \mu$	(C) $E(\overline{X}) = \mu$	(D) $E(\overline{X}) - \mu$
(4)	The hypothesis which is to be tested for possible rejection is:-			
(5)	(A) Simple Two-tailed Test is us	(B) Composite sed if:-	(C) Null	(D) Alternative
	(A) $H_1: \mu < \mu_0$	(B) $H_1: \mu > \mu_0$	(C) $H_1: \mu \neq \mu_0$	(D) None of these
(6)	In regression $\sum \hat{Y}$ is equal to:-			
	(A) 0	(B) ΣY	(C) a	(D) hX
(7)	If $v = 2 + 0.6x$ then the slope of the line is:-			
	(A) 2	(B) 26	(C) 0.6	(D) Zero
(8)	If $\sum d^2 = 0$ then rat	$(2)^{-2.0}$	to'-	
	(A) 1	(B) Zero	(C) = 1	(D) - 1 and $+ 1$
(9)	For a contingency table of order $r \times c$ the number of degree of freedom is equal to:-			
()	(A) rc	(B) $(r-1)(c)$	(C) (c-1)(r)	(D) $(r-1)(c-1)$
(10)	The value of Chi sou	(D)(7 - 1)(c)	(\mathbf{C}) $(\mathbf{C} - \mathbf{I})$ (\mathbf{I})	(D) (I = I) (C = I)
	(A) Zero	(B) Positive	(C) Negative	(D) A and B but not C
(11)	The components of time series are:-			
	(A) Four	(B) Three	(C) Two	(D) One
(12)	A second degree par	rabola has:-		
	(A) Two constants	(B) Three constants	(C) 2 or 3 constants	(D) Less than 2 constants
(13)	01 Byte =			
	(A) 4 Bits	(B) 6 Bits	(C) 8 Bits	(D) 10 Bits
(14)	In a Normal Distribution β_2 is equal to:-			
	(A) $3\sigma^4$	(B) 3	(C) $\frac{\sigma^4}{2}$	(D) $\frac{3\sigma^4}{4}$
(15)	The coefficient of skewness of Normal Distribution is:-			
	(A) Zero	(B) Positive	(C) Negative	(D) Both positive and negative
(16)	In normal curve the ordinate is highest at:-			
	(A) Mean	(B) Median	(C) Mode	(D) All of these
(17)	If $\sigma^2 = 5$ and $n = 2$ then $\sigma_{\overline{X}}^2$ is:-			
	(A) 2	(B) 2.5	(C) 3	(D) 5

38(NEW SCHEME)(Obj)(**PP**)-2015(A)-2700 (MULTAN)