Paper Code Number: 6194 Solution 2015 (A) Roll No: INTERMEDIATE PART-I (11th CLASS)				No:
MAT	HEMATICS PAP			E ALLOWED: 30 Minutes IMUM MARKS: 20
Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question. Attempt as many questions as given in objective type question paper and leave others blank. No credit will be awarded in case BUBBLES are not filled. Do not solve question on this sheet of OBJECTIVE PAPER. Q.No.1				
(1)	$Cos(\pi + \theta) =$	` ,		
(2)	Period of $Tan \theta$ is equal to:- (A) 4π (B) 3π (C) 2π (D) π			
(3)	Radius of escribed circle opposite to vertex " B " is equal to:-			
	(A) $\frac{\Delta}{s}$	B) $\frac{\Delta}{s-\alpha}$ (C) $\frac{\Delta}{s-\alpha}$	$\frac{\Delta}{-b}$ (D) $\frac{\Delta}{s}$	$\frac{\Delta}{-c}$
(4)	$Cos(Tan^{-1}0)$ is equal to	to:- (A) 0 (B) 1	$(C)-1$ (D) ∞	
(5)	If $x = Sin^{-1} \left(\frac{\sqrt{3}}{2} \right)$, the	en 'x' equals to:- (A) $\frac{-\pi}{2}$	(B) $\frac{\pi}{3}$ (C) $\frac{-\pi}{3}$	$\frac{\pi}{4}$ (D) $\frac{\pi}{4}$
(6)	Modulus of Complex N			
	$(A) a^2 + b^2 \qquad (a)$	$B) \sqrt{a^2 + b^2}$	(C) $a^2 - b^2$	(D) $\sqrt{a^2 - b^2}$
(7)	If $A = \{\}$, then $P(A)$ is equal to:- (A) Infinite set (B) Empty set (C) Singleton set (D) Null set			
(8)	Proposition $q \to p$ is	converse of:- (A) $p \rightarrow q$	(B) $\sim q \rightarrow \sim p$ (C)	$q \rightarrow \sim p (D) \sim q \rightarrow p$
(9)		er 3×4 , then the order of B) 4×4		(D) 3 × 4
(10)	If two rows(columns) of any square matrix are identical, then $ A $ is equal to:-			
	(A) 3	B) 2	(C) 1	(D) 0
(11)	If $x^3 + 4x^2 - 2x + 5$	is divided by $x - 1$, then the	remainder is:- (A) 1	0 (B) – 10 (C) 8 (D) – 8
(12)	If $b^2 - 4ac < 0$ in quadratic equation $ax^2 + bx + c = 0$, then roots are:-			
	(A) Rational (B) Equal	(C) Real and Unequa	(D) Complex/Imaginary
(13)	Partial fraction of $\frac{1}{x^2}$	$\frac{1}{-1}$ will be of the form:-		
	$(A) \frac{Ax + B}{x^2 - 1} $	$B) \frac{A}{x+1} + \frac{B}{x-1}$	(C) $\frac{A}{x+1}$	(D) $\frac{B}{x-1}$
(14)	If $a_n = (-1)^{n+1}$, then 26^{th} term of the sequence is equal to:- (A) 1 (B) – 1 (C) 26 (D) – 26			
(15)	In the infinite geometric		(,, ,)	
	1 /	$B) \frac{a\left(1-r^n\right)}{1-r}$, 1	(D) $\frac{n}{2} \left[2a + \left(n - 1 \right) a \right]$
(16)	The value of $\frac{3}{0}$ is equ	al to:- (A) 0	(B) ∞ (C) 3 (a)	D) 6
(17)	If A and B are mutually exclusive events, then $A \cup B$ equals:-			
	(A) $P(A) + P(B)$ (B) $P(A) - P(B)$ (C) $P(A) \cap P(B)$ (D) $P(A) + P(B) - P(A \cap B)$			
(18)	The sum of odd coefficients in the binomial expansion of $(1 + x)^n$ is equal to:- (A) 2^{n-1} (B) 2^{n+1} (C) 2^n (D) $2^n - 1$			
(19)	The expansion of $(1 +$	$(-2x)^{-2}$ is valid if:- (A) $ x $	$ <\frac{1}{2}$ (B) $ x <1$	(C) $ x < 2$ (D) $ x < 3$
(20)	_		(A) 150° (B) 140°	